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Abstract 

Blumentrath, S., Puliti, S., Molværsmyr, S. & Hamre, Ø. 2022. Wheel rut mapping with high 
resolution ortho-imagery – a comparison of data and methods. NINA Report 2137. 
Norwegian Institute for Nature Research. 

The number of registered All Terrain vehicles (ATV) in Norway has been constantly increasing 
over the last decade. Driving these vehicles off-road in nature requires special permission be-
cause of the potentially severe damage it can cause in nature. The number of registered vehicles 
however suggests that illegal driving occurs. In order to be able to better monitor this issue, 
efficient mapping techniques are required to cover the large areas where this can be relevant. 
Remote sensing has been explored as an efficient technique for that purpose earlier, however 
recent technological advances like the availability of Unmanned Aerial Vehicles (UAV) or deep 
learning for image analysis may further increase the potential of remote sensing. 

The aim of this project has therefore been to develop a coherent workflow to detect wheel ruts 
in drone and / or plane-based aerial imagery that can serve as a starting point for practical mon-
itoring tools. Method-development was conducted for two case study sides, one in northern and 
one in southern Norway, where drone imagery from autumn 2020 was available. The developed 
workflow covers all relevant steps of image analysis from preparation of input data to postpro-
cessing of modelling results and was made publicly available as a set of Python scripts. 

Results show that deep-learning performed better than more traditional image analysis tech-
niques and the initial deep-learning models developed in this project produce fair to good results 
for both plane- and drone based imagery in both study sites. Models utilizing drone data perform 
slightly better than models based on aerial images with regards to correctly capturing wheel ruts . 
Models based on drone imagery capture more details but currently also show a larger degree of 
noise and scattered false positive classifications. Models from aerial images perform best in open 
areas while they struggle more in forested areas. The developed post-processing routine im-
proves the quality of the final products and can produce condensed and more usable represen-
tations of the results. However, the classification of the results during post-processing with re-
gards to the severity of damages to esp. soil / terrain should undergo systematic evaluation and 
re-adjustment if needed. 

Together with the modelling results, re-processing of the raw drone images illustrate that the 
main benefit from using drone imagery is the timely data acquisition, both in terms of time of the 
year but also with regards to e.g. local urgency to monitor an area in more detail. Drone data can 
therewith be seen as an on-demand technology that is complementary to aerial images that are 
taken on a regularly basis for the Norwegian orthophoto program every 5th to 10th year. 

Other potential benefits from using drone imagery like the possibility to capture photogrammetric 
terrain models or multispectral imagery in and of themselves, currently do not seem to justify the 
extra effort necessary to acquire drone imagery because their contribution modelling accuracy 
may even be negative due to data quality issues. In particular, monitoring of soil impact of wheel 
ruts by means of repeated collection of photogrammetric terrain models seems to be hard if not 
impossible to conduct at the extent and scale used in this project with study area of ~6km2. 

Due to the limited amount of situations that are covered by the current models, further training 
under different seasons, light conditions, vegetation types and so on would be necessary to 
make the models more transferable and thus applicable in practical management. Since models 
for both drone and aerial imagery show comparable performance, images from the Norwegian 
orthophoto program should thus be a natural starting point in order to increase the amount of 
training data and therewith the number of conditions the model is trained with. In that context, a 
more systematic evaluation of the effect of image resolution should be conducted and other 
available data sources like ultra-high resolution satellite images (with up to 30 cm resolution) 
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may be considered. It should also be investigated whether it is feasible and adequate from an 
end-user point of view to consolidate the deep learning models that currently are different for 
drone and aerial imagery, into one coherent model in order to reduce the maintenance effort and 
at the same time increase the amount of both training data and imagery the model could be 
trained with. To that end, also recent methods to limit the required amount of test- and training 
data, like Few-Shot Learning (see e.g. Wang et al. 2020) should be explored in order to increase 
the practical applicability in a monitoring context. Finally, even if the developed workflow is usa-
ble already, technical improvements can further improve the practical applicability 

Stefan Blumentrath, NINA, Sognsveien 68, 0855 Oslo, stefan.blumentrath@nina.no 
Stefano Puliti, NIBIO, Høgskoleveien 8, 1433 Ås, Stefano.Puliti@nibio.no 
Sindre Molværsmyr, NINA, Thormøhlensgate 55, 5008 Bergen, sindre.molværsmyr@nina.no 
Øyvind Hamre, NINA, Sognsveien 68, 0855 Oslo, oyvind.hamre@nina.no  
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1 Introduction 

The number of registered All Terrain Vehicles (ATV) in Norway has constantly increased over 
the last decade, with growth rates significantly above those of e.g. passenger cars (see Figure 
1). 

Figure 1. Development of registered All Terrain Vehicles (ATV) in Norway in comparison to pas-
senger cars as a reference (Opplysningsrådet for veitrafikken 2022) 

In principle, it is forbidden in Norway to drive ATVs off-road in nature, without special permission. 
However, the increasing number of registered vehicles suggests that such illegal use occurs and 
that it may increase as well. The extent to which such illegal activities occur is however unknown. 

The risk of damage to vegetation and soil associated with increasing legal and illegal use of ATV 
in the terrain is an important background for the project. Wear and tear of vegetation as an effect 
of traffic in open country and monitoring of this, has for a long time been an important topic 
related to, among other things. management of protected areas and national parks (see e.g. 
Tømmervik et al. 2005, Evju et al. 2010). Non-motorized traffic is also increasing, and this leads 
to similar challenges related to monitoring (Evju et al. 2020). Knowledge of the scope and loca-

tion of the problem is, however, a prerequisite for effective handling in environmental manage-
ment. 

Due to the large and inaccessible areas where the problem can occur, there is a need for effec-
tive methods to capture relevant data and shed light on the problem. Remote sensing is therefore 
a natural data source to address this and try to get a better overview over the problem. 

Attempts have previously been made to identify wheel ruts with the help of remote sensing from 
aircraft and high-resolution satellites (Tømmervik et al. 2005). However, the possibilities for au-
tomating the analyses have been limited (ibid). Soil damage from motor vehicles has also been 
an important issue in forestry for a long time (see Dale 1995). Access to new data sources, here 
especially from drones, and analysis methodologies such as image segmentation, object-based 
image analysis, machine learning and deep learning provide opportunities for more accurate and 
effective monitoring (see eg Pierzchała, Talbot & Astrup 2016, Ćwiąkała et al. 2018, Rodway-

Dyer & Ellis 2018, Ancin-Murguzur et al. 2020, Eagleston & Marion 2020). Based on this, NIBIO 
has worked for several years to develop a sophisticated system for detecting wheel ruts from 
harvesting machines using drones in connection with logging (see, for example, Talbot, Rahlf & 
Astrup 2018), which is still under development (Kildahl 2020). The new methodological ap-
proaches have also been tested in connection with similar topics such as habitat type mapping, 
mapping of road edges (Senchuri 2020) or identification of road construction in connection with 

wind power development (Due Trier & Salberg 2020). 
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2 Aim and objectives 
 
In order to address the demand of managers to be able to monitor the extent and potential effects 
of off-road usage of ATVs in nature, the aim of this project is to develop a prototype of coherent 
set of remote sensing tools that can be combined in a workflow that provides managers at the 
end with useful information on and insight into the extent of vegetation and soil damages from 
ATV usage in nature. That workflow is supposed to cover all relevant image analysis steps from 
preparation of training- and test data, training and retraining of machine learning models, detec-

tion of wheel ruts in imagery as well as post-processing of classification results. In addition to 
locating wheel ruts from ATV usage, desired output should also cover - as far as possible - an 
estimation of severity of wheel ruts e.g. in terms of depth of wheel ruts or degree of vegetation 
damage. Finally, the workflow should where relevant and possible include ancillary data to im-
prove classification results. 
 

A focus during development of that workflow is to assess opportunities, advantages and disad-
vantages of as well as trade-offs between available data sources. Here, emphasis is put on the 
transferability of the models between sensors, in particular between image data acquired by 
 

- Plane, which is happening in Norway on a regular basis as part of a national program1 

conducted by the National Mapping Authority (Kartverket) with a repetition cycle of ~ 5 to 

10 years. Data from that program will become available regularly without additional ac-

quisition effort. This data is, however, usually limited to the RGB spectrum. 

- Drone, which will require to conduct targeted, more or less resource demanding acquisi-

tion campaigns. Drone imagery can however also provide terrain information, multispec-

tral channels or even high resolution laser scanning data. 

 
Other possibly relevant sensors in that context, like newly available very high resolution satellite 
imagery are not scope of the project, but findings regarding plane based ortho imagery may give 

an indication about the applicability of that data source for the detection of wheel ruts. The aim 
of that assessment is to help identifying an appropriate balance between detection quality and 
considerations regarding practical applicability with regards to resource requirements for pro-
cessing (compute) and labor for acquisition of data. A sub-objective in that context is to study to 
what extent a two-fold approach is feasible and appropriate, that uses plane-based orthophotos 
and drone imagery complementary, where aerial images are used for “screening” of lager areas 
and drone campaigns targeted for in depth monitoring of relevant areas identified during screen-

ing. 
 
In order to identify a cost-efficient monitoring approach, another sub-goal of the project is to 
determine a set of minimum requirements with regards to image / data quality and methodology. 
 
The developed software solutions will be based on Free and Open ource technology and soft-
ware libraries, so that the source code and models that will be made available as a result of the 

project can serve as a vendor-neutral, usable prototype, that opens for further development and 
improvement e.g. through application in new areas with either targeted data collection (from 
drones) or independent data acquisition (national aerial image program). 

 
 
1 https://www.kartverket.no/geodataarbeid/program-for-omlopsfotografering 
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3 Study Area, Data and Methods 
 
 

3.1 Study areas 
 

Study areas for this project have been two sites, one in Balsfjord, Troms (Northern Norway) and 
one in Rjukan, Telemark (Southern Norway) (Figure 2). The extent of the study area in Balsfjord 
is 2 km in east-west direction and 2.3 km in north-south direction, while the Rjukan study area is 
3.77 x 2 km respectively. The landscape at Balsfjord is mostly birch forest and wetland areas, 
while Rjukan is located at and above forest line and mostly covered by low alpine vegetation. 
 

 

Figure 2. Overview over the location of the study areas in Norway 

 
 

3.2 Data 
 
Data utilized in this project consists of different types of imagery data collected for the two study 
areas with UAV- and plane-born sensors (the latter referred to as “aerial images” in the following), 
training data for image analysis as well as ancillary geospatial data for masking possible mis-
classifications. 
 

3.2.1 Imagery data 
 
 
3.2.1.1 Raw drone image data 
 

Drone photos were captured by Andøya Space Center in 2020 using both DJI Phantom 4 Pro 
(P4P) and DJI Phantom 4 Multispectral (P4M). The drones have been flown in a grid pattern with 
a maximum altitude of 120 meters.  
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Table 1. Basic metadata for the raw drone imagery available to the project 

Area Date Sensor Size 
(in km2) 

Approximate 
ground sampling 

distance (GSD in 
cm / pixel) 

# of 
photos 

Size 
(GB) 

Skutviksvat-
net  

2020.10.08  P4M Multi-
spektral  

3,3  2.6  35.988  122  

  2020.10.08  P4P RGB  3,3  2.8 3.311  26,8  
Rjukan  2020.10.31  P4M Multi-

spektral  
9  3.5 x 7.0 73.755  250  

  2020.10.31  P4P RGB  9  3.7 4.189  29,3  
        117.243  428,1  

 
 

3.2.1.2 Processed drone image data 
 
Andøya Space Center processed the raw drone images into two RGB mosaics. Digital Surface 
Models (DSM) or Digital Terrain Models (DTM) that can be produced with photogrammetric al-
gorithms from raw drone imagery had not been produced and was not available. Neither had the 
acquired multispectral drone imagery from the DJI Phantom 4 Multispectral (P4M) been pro-
cessed, that contains infrared and red edge bands that are regularly used for vegetation moni-

toring. 
 
3.2.1.3 Orthophotos from Norge i Bilder 
 
For the two study areas, orthoimages were downloaded from Norge i Bilder in order to be able 
to study the effect of data sources on detection quality. The study site at Balsfjord was covered 
by a mosaic of two acquisitions with 0.25m resolution for one part of the area and 0.1m resolution 

for the other part (see Table 2). The study site at Rjukan was covered completely by a single 
project. For both study areas aerial-orthoimages were downloaded as LZW compressed Geotiffs, 
resampled upon download to the lowest common denominator of 25 cm resolution.  
 

Table 2. Most recent orthoimages for the study sites available from Norge i Bilder 

Study site Project name Acquisition date Resolution Pixel depth 

Balsfjord Troms 2016 2016-08-19 0.25m 24bit 

Balsfjord Balsfjord Målselv 2017 2017-07-23 0.1m 24bit 

Rjukan Tinn 2019 2019-06-17 0.1m 24bit 

 
 

3.2.2 Data annotation and training data 
 
Data annotation was carried out for a selection of tiles for both Balsfjord and Rjukan using either 
the drone or the aerial images. For the study site at Balsfjord the entire area was annotated. 
However, due to time constraints only a portion of the study site at Rjukan was annotated. The 
coverage of the annotation is visualized in Figure 3 where the grey areas indicate where anno-

tation was conducted, while white areas have not been annotated. Annotation was carried out 
using tiles of the study area, where - within each tile – all visible, relevant objects (wheel rut 
damage, hiking trails, …) were registered. The partial annotation of the Rjukan study site thus 
leads to the chess-board-like pattern visible in Figure 3. 
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Figure 3. Visualization of the annotated data (grey areas: annotated, white areas: not annotated) 
for the drone datasets in Balsfjord and Rjukan. With a detail on a tile used for training the model. 

 
The annotations consisted of drawing polylines in the center of the following linear elements: 
wheel rut damage (damage), hiking trails (trails), and dirt roads (road). The polylines were then 

buffered based on the category (i.e. damage= 0.6 m; trails= 0.3 m; road=2 m) and the resulting 
polygons rasterized (see Figure 3). Due to the different points in time at which the drone and 
aerial images were taken, the two datasets had to be annotated separately. Table 3 summarizes 
the length of the annotated tracks between the two data sources (i.e. drone and aerial images). 
The differences in total length were largely due to the lack of substantial wheel rut damage at 
the time of acquisition of the aerial images and in some cases due to their poor visibility because 
of the coarser resolution of the imagery or vegetation cover. The annotated data2 is together with 

a script for pre-processing3 available in the projects code repository on gitlab. 
 

Table 3. Summary of the annotated datasets split by study area and data source. 

 

AOI Dataset Damage (m) Trail (m) Road (m) Tot (m) 

Balsfjord 

Drone 15888 5821 283 21992 

Aerial 
images 

7545 1342 389 9276 

Rjukan 

Drone 1490 1964 1998 5452 

Aerial 
images 

1393 1615 2078 5086 

 
 
2 https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/1_training_prepros-
ess_bash/ground_truth_gpkg 
3 https://gitlab.com/ninsbl/wheel_rut_detection/-/blob/main/deep_learning/1_training_prepros-
ess_bash/burn_fasit.sh 

https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/1_training_preprosess_bash/ground_truth_gpkg
https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/1_training_preprosess_bash/ground_truth_gpkg
https://gitlab.com/ninsbl/wheel_rut_detection/-/blob/main/deep_learning/1_training_preprosess_bash/burn_fasit.sh
https://gitlab.com/ninsbl/wheel_rut_detection/-/blob/main/deep_learning/1_training_preprosess_bash/burn_fasit.sh
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3.2.3 Ancillary data for masking possible misclassifications 
 

In order to be able to mask out potential misclassifications of wheel ruts in a post processing 
workflow, ancillary geospatial data is used, meaning available data that has been mapped in 
other contexts. Here, especially data from “Felles Kart Database” (FKB4) is utilized. In areas 
where FKB data is lacking national 1:50,000 data (N505) may be used alternatively, with some-
what reduced accuracy. From all potential layers available in the FKB dataset only the layer with 
road polygons and water lines were deemed relevant in this context. 
 

Existing hiking trails may be exploited and extended by ATV users, so that using hiking trails as 
a mask dataset did not seem appropriate. Gravel roads were included in the FKB road polygons 
(at least for the study areas) so that using FKB line features was not considered here. Smaller 
streams and shores may spectrally appear to be similar to wheel ruts and confused with those 
during predictions. Therefore, line representation of water in FKB is utilized as an additional mask 
dataset. The FKB water layer is significantly more detailed than equivalent data in N50. 
 

 

3.3 Methods 
 
 

3.3.1 Reprocessing of raw drone images 
 
The pre-processed mosaics provided by Andøya Space Center did neither contain a Digital Sur-
face Model or Digital Terrain Model nor was a multispectral (including the Near Infrared (NIR) 
and Red Edge band) of the Phantom 4 Multispectral drone available. In order to be able to assess 
the information content of digital surface or terrain models in addition to multispectral imagery, 

the available raw drone images were re-processed using OpenDroneMap (ODM6) version 2.6.7.  
 
The available raw drone imagery contains data from two consecutive days for both study sites, 
taken with the same drone model and by the same operator. This gives a unique opportunity to 
look at the potential to use repeated drone acquisitions to monitor changes in the landscape. 
Earlier studies in Norway by Ancin-Murguzur et al. (2020) showed high accuracy and reliably 
comparable terrain data. The authors claim that the application of drones is suitable and benefi-

cial to monitor soil erosion in and around hiking trails. However, their study covered only a very 
limited area of 200 x 90 m photographed by a low-flying drone (10m) resulting in a ground sam-
pling density of ~0.5 cm. It is an open question whether their conclusion remains valid when the 
application of drones is scaled up by a factor of ~100. In the context of reprocessing the raw 
drone images it was therefore also assessed how well digital surface models from drone acqui-
sitions from two consecutive days at this scale are to detect eventual changes in the terrain. This 

was done by subtracting the two surface models to generate a difference map. Ideally, only 
minimal differences would be visible. 
 
The specific settings for reprocessing in OpenDroneMap were chosen in order to optimize the 
quality of resulting digital surface and terrain models. Best practice recommendations to that end 
in the OpenDroneMap documentation were followed and the taken steps during reprocessing 
are documented in a Unix shell script that is available in the public GitLab repository7 for the 

project. The resulting products were processed with 5 cm resolution, as this seems to strike a 
good balance with regards to the GSD in the raw imagery on the one hand and the amount of 
data and thus requirements with regards to resources for processing on the other hand. 

 
 
4 https://www.kartverket.no/geodataarbeid/geovekst/fkb-produktspesifikasjoner 
5 https://register.geonorge.no/register/versjoner/produktspesifikasjoner/kartverket/n50-kartdata 
6 https://www.opendronemap.org/ 
7 https://gitlab.com/ninsbl/wheel_rut_detection/-/blob/main/drone_image_pro-
cessing/run_odm_split.sh 

https://www.kartverket.no/geodataarbeid/geovekst/fkb-produktspesifikasjoner
https://register.geonorge.no/register/versjoner/produktspesifikasjoner/kartverket/n50-kartdata
https://www.opendronemap.org/
https://gitlab.com/ninsbl/wheel_rut_detection/-/blob/main/drone_image_processing/run_odm_split.sh
https://gitlab.com/ninsbl/wheel_rut_detection/-/blob/main/drone_image_processing/run_odm_split.sh
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3.3.2 Detection of wheel ruts in drone images and aerial photos with deep 
learning 

 
For the scope of training the deep learning model only the damage class was considered, thus 
all the other classes in the annotation raster were set to zero (i.e. background). Two separate 
models were trained based on the input imagery and annotations (drone or aerial images) from 

both study sites: 

• Drone model 

• Aerial images model 
 
For training the model we selected a Deeplabv3 model (Chen et al. 2017) with a ResNet-101 

backbone available from the PyTorch hub8. DeepLab is a semantic segmentation architecture 

that overcomes the loss of information due to the input’s size reduction in traditional convolu-

tional neural networks / pooling layers In contrast, the DeepLab architecture allows the seg-

mentation of objects at multiple scales by employing dilated convolutions and Atrous Spatial 

Pyramid Pooling (ASPP) modules. 

 

The model training requires batches of images of shape [N, 3, H, W], where N is the number of 

images, H and W are the height and width of the image in pixels and should be > 224 pixels. 
Based on the hardware available for training the network, N, or the batch size was set to 20. To 
ensure batch sizes of at least 20, we converted the original RGB images to 16 bits. H and W 
were set to 300 pixels as this was the largest possible size given the available hardware. Thus, 
the wall-to-wall imagery and annotation rasters were tiled9 into image tiles of 300 pixels x 300 
pixels. When multiplied by the ground sampling distance of each image data source the number 
of pixels corresponds to squares with sides of approximately 21 m and 60 m for the drone and 

the aerial images, respectively.  
 
Amongst all of the available tiles, tiles were selected that were intersecting with the annotated 
damage tracks. Amongst these, 70% of the tiles were randomly selected for model training, while 
the remaining were used for final validation of the model. In total 625 and 137 tiles were selected 
for training drone and aerial image models, respectively. 
 

Training was performed for a maximum of 8000 epochs, without hyperparameter tuning. No early 
stopping strategy was adopted and the best model, identified as the one with best Intersection 
over Union (IoU) for the damage class was stored at the end of the process10. IoU is the area of 
overlap between the predicted segmentation and the ground truth divided by the area of union 
between the predicted segmentation and the ground truth. 
 

During training, the best performing models were identified using Intersection-over-Union (IoU) 
metric and consequently selected for prediction of wheel ruts. The selected trained models were 
then applied and validated throughout the entire area. For validation the training tiles were ex-
cluded from the accuracy assessment as these data were seen by the model. 
 
Because the reprocessed drone imagery became available only late in the project, only the mo-
saic produced by Andøya Spacecenter was used for wheel rut detection with deep learning. 

 
 
 

 
 
8 https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/ 
9 The tiling of the original images is documented in the following scripts: 
https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/2_training_preprocess_py-
thon 
10 The model training is documented in the following scripts: https://gitlab.com/ninsbl/wheel_rut_de-
tection/-/tree/main/deep_learning/4_train 

https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/2_training_preprocess_python
https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/2_training_preprocess_python
https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/4_train
https://gitlab.com/ninsbl/wheel_rut_detection/-/tree/main/deep_learning/4_train


NINA Report 2137 
 

15 

3.3.3 Edge detection, object-based image analysis for detection of wheel ruts in 
drone images and aerial photos 

 
In order to substantiate methodological choices, a sub-goal in the project has been to assess the 
performance of classical image analysis techniques like edge detection, texture analysis and 
object based image analysis (OBIA) in comparison to deep learning methods described in chap-

ter 3.3.2. 
 
Therefore, drone and aerial image mosaics were also processed using Object Based Image 
Analysis (OBIA) workflow loosely oriented on the approach by Lennert et al. (2019). RGB chan-
nels were used to compute image texture measures (e.g. the Grey Level Cooccurrence Matrix), 
edge detection (using zero crossing) and, based on all the aforementioned, image segmentation 
(using mean shift algorithm). Segmentation was conducted in a way that avoids over-segmenta-

tion, meaning that segments or image objects do not get too large so that pixels within the narrow 
wheel rut structures do not get merged with neighboring segments. 
 
However, the superiority of deep-learning based methods for the given problem became evident 
already when comparing deep learning classification with segmentation results. In consequence, 
the OBIA methodology was not further pursued. An example of that comparison is presented 

and discussed in chapter 4.3. 

 
 

3.3.4 Post-processing of classification / detection results 
 
Prediction results from deep learning models described in chapter 3.3.2 are expected to contain 

misclassifications and noise that to some degree can be filtered using a post-processing routine 
(see Figure 4). Model output is a binary image classification that detects occurrence of wheel 
ruts. Applying post-processing to those binary classification results also allows to distinguish 
linear damages in single tracks from more sheet-like damages, where there are multiple crossing 
or parallel tracks, that have not been part of the image analysis in described in chapter 3.3.2. 
 
Furthermore, prediction results are initially returned in raster format and can be transformed into 

a more lightweight and user-friendly format (i.e. vector lines and polygons). Because image anal-
ysis thus far has been limited to localizing wheel rut damages, further description of the gener-
ated spatial objects is applied during post-processing along with further data cleaning by means 
of utilizing filtering and transformation algorithms, application of ancillary data as well as data 
derived from drone imagery like Digital Surface Models (DSM) or vegetation indices (e.g. Nor-
malized Difference Vegetation Index (NDVI)). 
 

Finally, occurrence of wheel ruts and the density of such is a descriptive parameter in the clas-
sification system Nature in Norway (NiN), named “7TK11 Spor etter ferdsel med tunge kjøretøy” 
in Norwegian. That parameter has a defined scale for the extent of damages to vegetation by 
wheel ruts. 

 
The GIS workflow to be developed in this project consists therefore of the following four steps 
(see also Figure 4). 

1. Masking of known, non-relevant structures like roads or streams that have some likeli-

hood to be confused with wheel ruts during image analysis. Data used for this step of the 
post-processing routine are described in chapter 3.2.3. 

2. Cleaning and noise removal by filtering detected objects of a size or geometry (length or 
length/boundary relationship) 

3. Subdivision of resulting classification into homogenous objects (lines / areas) that can 
be further described in terms of: 

 
 
11 https://artsdatabanken.no/Pages/181998 

https://artsdatabanken.no/Pages/181998
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a. Measurable effect of wheel ruts on the soil, as depressions and channels detect-
able in the Digital surface model (DSM) derived by photogrammetry from over-
lapping images acquired by drones 

b. Measurable effect on the vegetation as reduction of values in the vegetation in-
dex derived from multispectral (here only drone) imagery 

c. Geometrical properties of the detected image objects like length and width 
4. Aggregation of the filtered results into the scale defined by the 7TK parameter from NiN 

 

 

Figure 4. Overview over general concept of the post-processing workflow 

 
Technical requirements for the workflow development have been to implement parallel, tiled pro-
cessing in order to be able to a) utilize multiple cores for efficient processing or b) process the 
relatively large drone data also with limited resources. In addition, parameters used during pro-

cessing, that may vary between data sources or detection results should be possible to be spec-
ified by the user. Default values for those settings, as well as hardcoded script internal settings, 
are defined based on tests in several subregions and development iterations. 

 
GRASS GIS 8.0 is used as the main library for the post-processing of detection results because 
it provides the required functionality like conversion of data formats from raster to vector, filter 
algorithm, map calculator and so on and these tools are technically efficient to handle the signif-
icant amounts of data coming from drone-based sensors. Finally, GRASS GIS comes with a 

Python Application Programming Interface (API) that amongst others includes solutions for tiled, 
parallel processing. 
 
 

3.3.5 Numerical and visual assessment of detection and processing results 
 
To evaluate the models’ ability to detect wheel rut damage from ATV we adopted a twofold ap-
proach consisting of both a numerical and a visual assessment of the quality of the automatic 
detection and post processing. 
 

Model output from wheel
rut detection

Vector areas of sheet-like 
damage

Vector lines of single wheel
ruts

7TK wheel rut density map

Multispectral ortho-mosaic

Digital Surface Model

Ancillary GIS data
(e.g. roads and streams)

Postprocessing

Filtering

Description

Transformation
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The numerical approach consisted of computation of the precision (P), recall (R), and F1-score. 
The precision score is a measure for the ability of the model to minimize the number of false 
positive samples, the recall score describes the ability of the model to predict all positive test 
samples correctly, while the F1 score represents the harmonic balance of the precision and recall 
score. Finally, as an overall accuracy measure, balanced accuracy is computed as the average 

of the F1-score of all classes (wheel rut damage (1) and background (0)). 
 
While the numerical assessment describes the general performance of the model quite well, it is 
important to understand the spatial distribution and pattern of detection results, in order to identify 
and address possible issues of the produced models. That is especially true when, such as in 
this case, in the resulting models should be understood as a first prototype that can be improved 
in further development. The purpose of visual assessment of the classification accuracy is thus 

to identify cases where model predictions either fail or perform well. This can give indications 
about possible further corrections as well as uncertainties in the modeling results. Visual assess-
ment is conducted as a qualitative, expert judgement where selected cases are highlighted. 
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4 Results and discussion 
 

4.1 Re-processing of drone images 
 
An important motivation to reprocess the available raw drone imagery has been to assess the 

information content of both multispectral drone imagery and photogrammetric digital terrain and 
surface models (DTM / DSM). 
 

4.1.1 Multispectral imagery and vegetation indices 
 
Results of the re-processing of the multispectral data show patchy patterns (see Figure 5). That 
is likely due to lack of calibration between images during processing in OpenDroneMap. How-
ever, relations of reflectance values between bands within the mosaics are mostly preserved 
during processing so that e.g. values of the Normalized Difference Vegetation index (NDVI) de-
rived from those patchy images is much less affected by the patchiness of the mosaics, though 
not entirely free from it (see Figure 5B). 

 
It is important to note that multispectral mosaics (left hand side in Figure 5A) in OpenDroneMap 
are returned with reflectance values between 0 and 1 instead of digital numbers in the classical 
spectrum of RGB images (0-255). Thus, images do not render like e.g. RGB-orthophotos in Ge-
ographic Information Systems out-of-the-box. That means they are not immediately suitable for 
visualization. 

 

 

Figure 5. Multispectral mosaics and Normalized Difference Vegetation Index (NDVI) from P4M-
drones processed with Open Drone Map 2.67 

 
Due to the lack of comparison with multispectral imagery from other drone models other or pro-
cessing with other software, the issues visible in multispectral images cannot be pin-pointed to 
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a single source of error with absolute certainty. However, calibration of camera parameters and 
intercalibration across single images is ongoing work in ODM for the drone model that has been 
used to acquire the available raw data in this project. Related software changes are about to 
become available12. Thus, increased quality of multispectral image products from ODM can be 
expected in future version, how significant the improvements will be remain to be seen. Still, the 

patchy characteristics of the output from the current algorithms in OpenDroneMap with the pro-
vided multispectral imagery clearly hamper the usability of these data in a wall-to-wall application 
where not only local (within pixel value relations and statistics) but also global (across pixel value 
relations and statistics) become important. 
 
 

4.1.2 Photogrammetric terrain and surface models 
 
Thanks to the overlap between images from systematic drone survey campaigns it is possible to 
generate very high-resolution terrain models from those data using photogrammetry. For both 
study areas digital surface and terrain models were produced with data from both the multispec-

tral and RGB sensors. 
 
Resulting photogrammetric terrain and surface models from the multispectral raw data (see Fig-
ure 6A) show an overall lower quality, compared to such models derived from the higher reso-
lution RGB imagery (see Figure 6B). Tracks from ATVs become visible in significantly more 
detail from the latter data source. This indicates a trade-off between using higher-quality terrain 

information (feature matching from high resolution images) and vegetation information (infrared 
and red edge bands from multispectral imagery). 
 

 

Figure 6. Comparison hillshade representation of Digital Surface Models (DSM) from multispec-
tral (P4M drone, left) and RGB imagery (P4P drone, right) processed with Open Drone Map 2.67 

 

 
 
12 https://github.com/OpenDroneMap/ODM/pull/1392 

https://github.com/OpenDroneMap/ODM/pull/1392
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Both datasets contained a notable number of artifacts and areas with corrupted height infor-
mation, likely due to a lack of overlap between single images and/or problems for the software 
to identify common features in image pairs within more homogenous vegetation. This underpins 
the requirement for adequate flight planning for capturing imagery that can also produce high 
quality terrain information. 

 

 

Figure 7. Example of artefacts and corrupted height information in the DSM created from high 
resolution, RGB drone imagery in Balsfjord  

 
 

4.1.3 Monitoring severity of surface damage over time  
 
For photogrammetric terrain and surface models from drone imagery to be useful for monitoring 
the depth of the same trails over multiple years, there need to be high repeatability in the creation 

of DTMs to begin with. Among the available dataset for both study areas there was a smaller 
patch that was flown on two consecutive days. Using this area, comparability of terrain models 
from two consecutive days were assessed to identify concerns one should have in mind when 
designing future monitoring. 
 
Ideally the datasets from both days should be almost identical. However, a difference map of the 

generated 2.5D models from the multispectral drone images of the Balsfjord study area, which 
had the lowest GPS error, shows significant mismatch between data generated from the two 
independent days. The average difference in Z-direction was ~3m and standard deviation of 
differences was ~0.7m. That is a multiple of the depth of wheel ruts that was measured manually 
and in the post-processing routine of up to ~ 0.2 - 0.3m (see also chapter 4.4.4). Error in that 
dimension renders a direct, pixel-wise comparison of height values in detected wheel ruts using 
photogrammetric terrain models ruts inappropriate. 

 
The main reason for the significant overall differences between the two independent terrain mod-
els are that there is both a notable offset in x- and y- direction as well as a general tilt of the two 
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datasets towards each other in the horizontal plane (see Figure 8). These issues could be cir-
cumvented to some degree by means of using reference points, measured with high-precision 
GPS. Such measurements however increase the time required for data acquisition. 
 

 

Figure 8. A pseudo-color representation of the difference between the DTM from Balsfjord day 

1 and day 2. Both missions were flown with Phantom 4 Multispectral and have a ODM calculated 
GPS error of 0.48 and 0.75 meters. 

 
The dataset collected by the multispectral drone (P4M) is corrected with RTK GPS. In theory, 
this should achieve an absolute spatial accuracy around 0.1 meters or lower13. The most likely 
reason for the GPS error to be higher in this case is insufficient image overlap in some parts of 
the image, which usually drives up the overall error slightly. 

 
However, retaining equally high quality of the data for such large areas is in any case challenging 
as there are many factors to consider, flight time being the main one. Even a GPS error of just 
0.1 meters is not much smaller than the width of an ATV wheel. Thus, comparing track depth on 
a pixel-by-pixel basis with the available data does not seem a realistic endeavour at the given 
scale in general. So, findings from Ancin-Murguzur et al. (2020) that drones can be a very valu-
able tool for monitoring e.g. soil track erosion needs to be understood as highly scale dependent 

and mostly feasible for very detailed drone campaigns at smaller extents. 
 
The monitoring of depth from year to year is in other words not a straightforward process. If 
reasonably possible at all at the given scale here, more effort would have to be put into the more 
exact spatial matching of terrain models from two points in time. 
 
Within a single day drone imagery is clearly able to capture impact of off-road driving ATVs on 

soil and terrain (see Figure 6). Given the artefacts visible in the photogrammetric terrain models 
of the available data, an obvious challenge is to capture images in a way that allows to create 
terrain models of homogenous and high quality. 
 

 
 
13 It should also be noted that we have only looked at the reported GPS errors from OpenDroneMap, 
and not used the ideal method with points collected in the field to compare against. 
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4.1.4 Resources consumption for re-processing of drone images 
 
Resource consumption for handling drone images is an important practical consideration for a 
wider application of a monitoring approach. Processing the large amounts of drone imagery is 
quite resource demanding. Processing times for the 8 given datasets (2 days from 2 sensors in 
2 study sites) varied between a few hours of processing for smaller areas of multispectral im-
agery to several days for the larger areas with high resolution RGB images. And even on pow-
erful server hardware datasets need to be split into chunks in order to be processable with the 

software library applied here (OpenDroneMap). When it comes to both peak and average re-
source consumption, processing the high-resolution RGB-imagery in OpenDroneMap is signifi-
cantly more resource demanding than processing of the multispectral imagery. Although multi-
spectral imagery is significantly faster to process, it is much less efficient with regards to storage 
consumption and spatial coverage. The available multispectral datasets cover less area while 
occupying 5 to 8 times more storage than the respective RGB imagery. 
 

 

4.2 Detection of wheel ruts in drone images and aerial photos with 
deep learning 

 
For the drone dataset the model achieved best performance at epoch 63 (IoU: 91.6% for the 
background and 30.9% for the wheel ruts), while for the aerial image dataset the IoU was best 

at epoch 726 (IoU 97.9% for the background and 26.6% for the wheel ruts). 
 

4.2.1 Numerical evaluation of detection quality 
 

The validation of the raw predictions from the trained DeepLABV3 model revealed a good bal-
anced overall accuracy for all models with scores between 66 and 82 (see Table 4) The back-
ground class was mostly predicted correctly as seen by the large precision, recall, and F1 scores. 
 

Table 4. Summary results (prior to post-processing of the predictions) of the different combina-
tions of study area and data source in terms of overall accuracy (OA = average of the F1-score 

of all classes (wheel rut damage (1) and background (0)), precision (P = true positives / (true 
positives + false positives)) representing the ability of the model avoid false positive detections, 
recall (R = true positives / (true positives + false negatives)) representing the ability of the model 
to detect all wheel rut pixels, F1 score (F1 = 2 * (precision * recall) / (precision + recall)) for the 
two classes object of study. In addition, specific information on the type of commission errors is 
reported split into roads and hiking trails which were wrongly classified as damaged by wheel 
ruts. 

   Background Wheel rut damage 

Other commis-
sion errors 

Area Data source OA P R F1 P R F1 road Trail 

Balsfjord 
drone 71.7 97.7 94.1 95.8 38.8 62.0 47.7 68 47.2 

aerial 
images 66.7 99.1 98.3 98.7 29.4 42.7 34.8 17.6 15.3 

Rjukan 
drone 66.4 97.4 90.0 93.6 28.7 63.0 39.4 67.74 38.75 

aerial 
images 82.2 99.8 99.1 99.5 52.6 85.3 65.0 49.4 12.7 
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On the other hand, the prediction of the wheel rut damage class achieved in general relatively 
low precision scores between 28 and 52, and moderate to good recall scores between 42 and 
85. In other words, the models detect wheel ruts at an acceptable rate but also contain a number 
of false positive detections. 
 

Even though the aerial and drone datasets should be considered as separate datasets as they 
were collected at different times, with different number of damages (see Table 4), the models 
trained on aerial images showed fewer false positive detections. This was mainly due to the 
presence of many artifacts in the drone predictions due to the use of relatively small tiles. While 
this was not possible to solve within the limited time for this specific project, future developments 
of this methods should aim at developing ways to reduce such edge effects for example by down 
sampling the drone imagery and using larger tiles as for the aerial images. Further improvement 

could be achieved by implementing an overlap between neighboring tiles, which could be re-
moved in post-processing and thus reduce the edge artifacts. 
 
Correct detection of wheel ruts shows for both drone and aerial images a moderate to good 
quality (scores of 30 to 60), with a slightly better performance of drone imagery. The opposite is 
true in the Rjukan case. However, there were only very few validation data points available for 
aerial images, making the validation results for this case less reliable. The validation for the 

wheel rut detection from drone imagery in Rjukan on the other hand mostly confirms the results 
from the Balsfjord case. 
 
While the road and trails annotations were not used for training the model, we used this infor-
mation to determine the amount of predicted damage pixels which belonged to roads or trails. 
Such additional analysis revealed that both models were classifying roads and hiking trails as 
wheel rut damage to different degrees (see Table 4). This was likely caused by the fact that 

these two classes were not specified in the model and possible ways to overcome such issue 
are either to train models that include also these classes, or remove these predictions in post-
processing based on existing geospatial databases (see chapter 4.4). 
 

4.2.2 Visual assessment of detection results 
 
In the figures below (Figure 9 to Figure 16) it is possible to observe the final output for the 
predictions from the model for the drone and aerial images and for Rjukan and Balsfjord, com-
pared to the annotated reference data. As visible by the comparison of the predictions for the 
drone model (Figure 12 and Figure 16) and the aerial images model (Figure 10 and Figure 14), 
the former was characterized by the presence of artifacts (i.e. commission errors) at the edge of 
the tiles used for prediction. Note for examples the almost linear occurrence of such artefacts in 

the eastern part of the Rjukan study site. Predictions from drone imagery are furthermore nega-
tively affected by false positive detections that were relatively evenly distributed across the entire 
study area and seem to follow the pattern of the tiles used during prediction (see also (Figure 
12 and Figure 16 for detail). 
 
Some of loss of accuracy is likely caused by the annotation where reasons for misclassifications 
can be that i) annotated tracks were not clearly visible (i.e. prolongation of existing and visible 

tracks), ii) annotated lines were not exactly in the center of the linear features, iii) uncertainty of 
the class the annotated features belong to (e.g. transition zone between different features). 
These issues are likely to have played a negative role on the models’ quality. 
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Figure 9. Annotated reference data for aerial imagery at the study site in Balsfjord. 
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Figure 10. Occurrences of wheel ruts predicted from aerial imagery at the study site in Balsfjord. 
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Figure 11. Annotated reference data for drone imagery at the study site in Balsfjord. 



NINA Report 2137 
 

27 

 

Figure 12. Occurrences of wheel ruts predicted from drone imagery at the study site in Balsfjord. 
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Figure 13. Annotated reference data for aerial imagery at the study site in Rjukan. 
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Figure 14. Occurrences of wheel ruts predicted from aerial imagery at the study site in Rjukan. 
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Figure 15. Annotated reference data for drone imagery at the study site in Rjukan. 
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Figure 16. Occurrences of wheel ruts predicted from drone imagery at the study site in Rjukan. 

 
 
In addition to the overall impression, examples can be highlighted from the visual assessment of 
the modelling results that represent important characteristics of the quality of the output of the 

developed models.  
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As an indication for how well the deep learning model can detect wheel ruts in good cases is 
shown in Figure 17. Here, the model is able to correctly detect even a relatively hardly visible 
wheel rut in a wetland area that may be a remnant of older driving activities. 
 

 

Figure 17. Correct detection of a relatively hardly visible wheel rut 

The developed models capture also areas with extensive off-road driving activity quite well (see 
Figure 18). Results from models trained on aerial images seems to be in fact most reliable in 
exactly these kinds of areas, that can be easily spotted in an overview of the model outputs. 
 

 

Figure 18. Illustration of good detection rates in areas with extensive off-road driving activity 

 

False positives detection occur mainly in in areas with shadows from vegetation or a more tex-
tured vegetation pattern (see Figure 19). In the upper image of Figure 19 also the pattern from 
image tiles used for training and predictions is notable. 
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Figure 19. Scattered false positive detections in drone imagery in areas with shadows from veg-
etation in forested areas (top) or a more textured vegetation pattern in wetlands (bottom) 

 

Other areas where misclassifications notably occur are along water bodies and small streams 
as well as along trails and or gravel roads (see Figure 20). These are kinds of errors that to 
some extent can and will be addressed during post-processing.  
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Figure 20. Examples of false detections along streams and hiking trails in the raw predictions 
that can – partly – be addressed through post-processing (see chapter 4.4) 

 
In contrast, areas where wheel rut detection works quite well even when using lower resolution 
aerial images are especially wetland areas with a rather homogenous, smooth vegetation struc-

ture (see Figure 21).  
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Figure 21. Example of areas where wheel rut detection works quite well even in aerial images 

 

 

4.3 Edge detection, object-based image analysis for detection of 
wheel ruts in drone images and aerial photos 

 
As mentioned already in chapter 3.3.3, it became evident early in the project from comparison 
of image segmentation and deep learning modeling results, that the deep learning approach 

generally performs better for the case of wheel rut detection. Deep learning appears especially 
advantageous in situations where wheel rut damages are only minor or initial with less clear 
contrasts to the surrounding vegetation (see Figure 22). Image objects and edge detection strug-
gle with picking up boundaries of the wheel ruts, and even with small segment sizes, segment 
boundaries spill out onto the areas surrounding the actual wheel ruts (see Figure 22 (C)). This 
issue will subsequently lead to less clear statistical differentiation and consequently model accu-
racy. 

 
These findings underpin the work by Guirado et al. 2017, who found that deep learning performed 
better compared to OBIA approaches when detecting individual shrubs. The fact that other ad-
vantages of deep learning are that “it required less human supervision than OBIA, can be trained 
using a relatively small number of samples, and can be easily transferable to other regions or 
scenes with different characteristics, e.g., colour, extent, light, background, or size and shape of 

the target objects” (Guirado et al. 2017) lead to the decision that the OBIA approach was not 
further pursued in the project and efforts rather focused on post-processing (see chapter 4.4). 
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Figure 22. Comparison of edge detection with a zero-crossing algorithm (B), image segmenta-
tion with mean shift algorithm and settings that produce small but internally more homogenic 
segments (C), and results from wheel rut detection with deep learning (D) 

 
 

4.4 GIS-workflow for post-processing of detection results 
 
The developed GIS-workflow for post-processing of wheel rut detection results aims mainly at 
extracting the following information: 
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1) vector line features for single, linear tracs from ATVs 
2) vector polygons for areas with sheet-like damages from parallel or crossing tracs from 

ATVs 
3) trac density according to Nature in Norway (NiN) 7TK 

 

Another important aim of the post-processing is to clean artefacts and similar noise in the results 
is removed from the resulting datasets. A benefit of the vector-based output from post-processing 
is simplified manual inspection and correction if needed. 
 
 

4.4.1 Methodological components of the post processing 
 
Most of the elements of the post-processing represent rather standard GIS operations like object 
extraction, line thinning, map calculator operations, distance measurements, or data type con-
versions. Filtering of artifacts is then mainly done using size, width and length estimates. The 
implemented algorithm for assessing the impact of wheel ruts on the soil and vegetation however 

warrants some more methodological description. 
 
Damage of wheel ruts to vegetation and soil will be digitally visible as linear depressions in veg-
etation indices (here NDVI) and terrain models respectively with values lower than surrounding 
pixels. In order to assess the “depth” to which damages occur, first such depressions are identi-
fied. For this a geomorphometric algorithm (“r.geomorphon”) is applied that classifies pixels into 

different types of morphometric structures like channels, pits or ridges. The wheel ruts them-
selves appear as channels or pits in the resulting maps. Then depth of those channels and pits 
is measured by subtracting their pixel values from interpolated values of the surrounding cells. 
Finally, within the identified wheel rut objects the depth is assigned to the vector representation 
of the mapped wheel ruts as attributes, together with the number of depressed pixels. Assign-
ment of attribute values is done using neighborhood statistics for line features and univariate 
statistics for areas. 

 
Resulting attribute valued are classified into 4 classes, where the value of  

0 refers to zero detectable damage or missing data, 

1 refers to minor soil or vegetation damage, 

2 refers to medium soil or vegetation damage and 

3 refers to most severe soil or vegetation damage. 

  
Examples of resulting classifications can be seen in Figure 27 and Figure 28. 
 
Both for filtering and classification, threshold values were defined using visual inspection of the 
data. Width, length, and size thresholds, these are implemented as parameters to the command 

line tool and can be adjusted by the user if needed. 
 
 

4.4.2 Technical documentation 
 
The post-processing algorithms are implemented in a standalone, command line script written in 
Python 3 (see Figure 23). It is tested on Ubuntu Linux 18.04 with OSGeo libraries from Ub-
untuGIS – unstable repository. On Unix systems the script can be invoked directly with the ./post-
process command, while on MS Windows, the Python interpreter needs to be called first (i.e. 
python3 post-process14) 

 
 
14 With the current libraries in OSGeo4W the workflow does not succeed. However, the workflow 
utilizes the latest library version, and operating system specific bugs that may occur after major ver-
sion updates the now hamper the workflow from finishing can be expected to be fixed in upcoming 
bugfix releases. 
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Figure 23. Screen shot of the command line interface of the post-processing script 

 
Basic required input are the results of the model predictions provided in the input option. Output 
of the post-processing routine are a GeoPackage file containing vector representations of the 

extracted and filtered lines and areas as well as GeoTiff with the NiN 7TK map and those will be 
written into the directory provided in the output option. All temporary data is written into the work-
dir directory, that ideally would be located on a fast storage medium. If ancillary vector data (e.g. 
from FKB) should be applied for masking, such data can be provided in the streams and roads 
option. 
 
Other relevant parameters are; 

- minimum_length: The minimum length of possible tracks in meter (default: 45.0) 
- minimum_width: The minimum width of possible tracks in meter (default: 1.0) 
- maximum_width: The maximum width of possible tracks in meter. Detected tracs 

wider than this threshold are considered sheet-like damages and mapped as areas 
(default: 4.5) 

- minimum_size: The minimum size of possible tracks objects to keep (in m2). De-

tected objects smaller than this size are discarded if not part of a network (default: 
65.0) 

- minimum_gap: The minimum distance between possible track objects to treat as 
one. Detected objects closer to each other than this distance are treated as one (de-

fault: 3.0) 
 
For the case of drone imagery, also a dsm can be provided for the assessment of impacts of 
wheel ruts on soil and multispectral imagery (in the ndvi option) for calculation of NDVI and sub-
sequent assessment of the impact of wheel ruts on vegetation. If multispectral imagery is pro-
vided, the band order has to be specified as a string consisting of band abbreviations, here the 
default order of bands of the multispectral imagery are set to those of the P4M drone. 

 
Since the process is parallelized to a large degree, it would benefit from distributing the pro-
cessing tasks over several cores. The number of Central Processing Units (cores) to utilize for 
parallel processing can be provided in the nprocs option. Parallelization is applied using tiles and 
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the tiling option defines the number of rows and columns the process should be split into. In order 
to secure efficient resource utilization with tiling, the number of tiles should be set to a multiple 
of the number of cores in the nprocs option. If no tiling is defined but more than one core is 
allocated, tiling is computed automatically. Tiling can also help to limit the amount of required 
memory for processing if the number of tiles is larger than the number of cores. Other optional, 

technical parameters are message verbosity (verbose), meaning the level of process information 
given during computation and whether earlier runs should be overwritten (overwrite). If only parts 
of a mosaic should be processed, a processing window can be defined in the proc_win option. 
 
 

4.4.3 Numerical assessment of post-processing results 
 
Post-processing improves overall accuracy scores for all cases, except predictions for aerial im-
ages in Rjukan where only very limited validation data was available (see Table 5). As expected 
improves post-processing the precision score of the wheel rut class and the recall score of the 
background class respectively, while recall for wheel rut class and precision for background class 

is slightly reduced. This is because post-processing only removes positive classifications and 
here especially the number of false positives. The accuracy improvement of classification results 
for drone imagery is consistently larger than for classifications from aerial images. Classifications 
from aerial images contain less artifacts from image tiles so that the cleaning part of the post-
processing routine has less effect on predictions from that data source. 
 

Table 5. Changes in classification accuracy after post-processing (accuracy scores before post-
processing are given in parentheses) of the different combinations of study area and data source 
in terms of overall accuracy (OA = average of the F1-score of all classes (wheel rut damage (1) 
and background (0)), precision (P = true positives / (true positives + false positives)) representing 
the ability of the model avoid false positive detections, recall (R = true positives / (true positives 
+ false negatives)) representing the ability of the model to detect all wheel rut pixels, F1 score 
(F1 = 2 * (precision * recall) / (precision + recall)) for the two classes object of study. 

   Background Wheel rut damage 

Area 

Data 
source 

Overall 
Accur. Precision Recall F1 Precision Recall F1 

Balsfjord 

Drone 
 

73.7 
(71.7) 

97.3 
(97.6) 

96.1 
(94.1) 

96.7 
(95.8) 

46.5 
(38.8) 

55.5 
(62.0) 

50.6 
(47.7) 

Aerial 
images 

 65.1 
(66.7)  

95.0  
(95.2) 

97.7 
(97.0)  

96.3 
(96.1) 

29.4  
(27.9)  

16.0 
(19.2)  

20.7 
(22.8)  

Rjukan 
Drone 

68.2 
(66.4) 

96.8 
(97.4) 

93.6 
(90.0) 

95.2 
(93.6) 

34.3 
(28.7) 

52.1 
(63.0) 

41.4 
(39.4) 

Aerial 
images 

76.8 
(82.2) 

99.5 
(99.8) 

99.4 
(99.1) 

99.5 
(99.5) 

52.6 
(52.6) 

56.0 
(85.3) 

54.2 
(65.0) 

 
The effects of cleaning with ancillary data are not reflected in the accuracy scores because these 
areas were not covered by validation data. Likewise are neither artefacts along the boundary of 
image mosaics covered with validation data so that these are not reflected in the accuracy scores 
either. 
 

 

4.4.4 Visual assessment of post-processing results 
 

The post-processing, conducted with the default settings for the parameters mentioned above 
(like e.g. minimum_size), removes a significant amount of noise and misclassification, keeping 
correct detections mostly in place (see Figure 24 and Figure 25). Especially for the drone 
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imagery, there still remains a significant number of larger objects with misclassifications  (see 
also Figure 26). Cleaning those in a post-processing routine would lead to a disproportional loss 
of correct detections, and should thus rather be addressed in further model improvements with 
an increased amount of training data. 
 

 

Figure 24. Overview over results of post-processing of predictions from drone and aerial imagery 
at Balsfjord study site 

 



NINA Report 2137 
 

41 

In Rjukan usefulness of the application of ancillary data becomes more visible where roads are 
filtered out. However, due to spatial offset between drone imagery and ancillary FKB data not all 
areas are filtered properly. That offset would ideally be addressed in the processing of the drone 
imagery and use of high precision GPS. 
 

 

Figure 25. Overview over results of post-processing of predictions from drone and aerial imagery 
at Rjukan study site 

 
Post-processing does currently not clean dense artefacts at image boundaries. This is an issue 

could be included relatively simply in a future version of the post-processing routine e.g. using a 
buffer around the alpha channel or NoData areas in the input images. For square image data 
this could already now be addressed by defining an adequate processing window in the respec-
tive command line option. 
 
Figure 26 shows cases where post-processing often fails to clean misclassifications are areas 
in wetlands or forest with vegetation shows pattern in reflections that can be visibly similar to 

wheel ruts in the training data. Such, more complex cases should be addressed in a next iteration 
of model improvement and re-training, rather than in rule- or threshold based post-processing 
routine. 
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Figure 26: Examples of misclassifications of drone imagery in forested and wetland areas where 
post-processing fails to clean. Original predictions in transparent red and vector lines from post-

processing in blue. Background is the RGB mosaic from drone imagery used for prediction. 

 
Vector data that is returned from the post-processing can during post-processing be classified 
with regards to impact of wheel ruts on soil or vegetation, if a DSM or multispectral imagery is 
provided as input. A disadvantage with regards to evaluating to which extent the classification 
captures significant and relevant differences on the ground is hampered by a slight spatial mis-
match between the model predictions and terrain or multispectral data. That spatial  error is due 

to the fact that the predictions were generated from the original ortho-mosaic from Andøya 
Spacecenter (see chapter 3.2.1.2) – due to time constraints – and that this does not fully corre-
spond to the terrain models and multispectral mosaics produced later in the project (see chapter 
3.3.1). 
 
Both the assessment of soil and vegetation damage rely on the availability of drone imagery from 
which the required input can be computed. Because of that as wheel as because of mentioned 

spatial and also temporal mismatch between possible input data sources, these post-processing 
options are only meaningful for drone imagery. 
 
Figure 27 and Figure 28 illustrate results of the classification of the severity of wheel rut dam-
ages on soil / terrain and vegetation. The upper row shows the raw predictions (transparent red 
areas) and post-processing results (vector lines) over the drone ortho-mosaic, the row in the 

middle covers the classification of the impact of driving activity on the soil and terrain in that 
same areas and the row at the bottom the classification effect on vegetation represented by 
NDVI values. 
 



NINA Report 2137 
 

43 

 

Figure 27: Examples of the assessment of soil / terrain impact and vegetation damage of wheel 
ruts at the Balsfjord study site (damage classes: 0 = zero detectable damage or missing data, 1 
= minor soil or vegetation damage, 2 = medium soil or vegetation damage, 3 = most severe soil 
or vegetation damage.). 

 

Thresholds for the binning of the underlying continuous depth- and NDVI-depression values into 
the four classes mentioned in chapter 4.4.1 were chosen based upon visible differences of im-
pact on the terrain and NDVI at wheel rut locations and the different coloring in Figure 27 and 
Figure 28 reflects variation in the underlying values. From the visual assessment, classification 
of surface damage appears to be more slightly reliable than classification of vegetation damage. 
Unfortunately, the spatial mismatch between mosaics used for detection of wheel ruts with deep 
learning, and mosaics used to compute NDVI as well as the produced terrain models leads to 

errors in the classification and thus makes the assessment difficult. In any case, to what degree 
visible changes in the terrain model or NDVI values correspond to relevant changes on the 
ground could not be studied in this project. 
 
In consequence, thresholds that mark the upper and lower bounds of the four classes should be 
studied and evaluated in further follow up work to ensure they represent relevant information 
value. 
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Figure 28: Examples of the assessment of soil / terrain impact and vegetation damage of wheel 
ruts at the Rjukan study site (damage classes: 0 = zero detectable damage or missing data, 1 = 
minor soil or vegetation damage, 2 = medium soil or vegetation damage, 3 = most severe soil or 
vegetation damage.). 

 

An additional output from post-processing is a map of wheel rut density that reflects the NiN 7TK 
variable. Figure 29 shows those post-processing outputs for the Balsfjord study area for wheel 
ruts detected from aerial images from 2016 and 2017 on the left-hand side and based on drone 
imagery from 2020 at the right hand side. The 100m pixel size of the 7TK maps reduces the 
amount of noise in the map products. Because it is based on counts of 10m pixels with wheel 
ruts it is however sensitive for false positive detections, so that, esp. for this kind of results  more 
aggressive filtering of false positive predictions would be advised. 
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Figure 29. Track density according to NiN 7TK computed with the developed post-processing 
routine for the Balsfjord study site 

 
 

4.4.5 Recommendations and needs for further development 
 
Main needs for improvements of the post-processing routines are to make it less dependent on 
the chosen resolution (currently the process is optimized for 0.15m resolution). Furthermore, 
default values for different settings that have been based on visual data inspection for now, 

should undergo a more systematical evaluation and re-adjustment. Another relevant area for 
improvement is the handling of spatial off-set between ancillary data (e.g. through buffering) and 
a solution for cleaning of misclassifications at the image boundaries. Finally, given the sensitivity 
of the 7TK maps for false positive predictions, the production of those maps should probably be 
separated out and applied to the resulting vector data after that received a manual check and a 
relatively efficiently final tweak. 
 

Further improvements in terms of performance can be expected with the release of the 8.2 ver-
sion of GRASS GIS where a couple of tools have been parallelized that have not been possible 
to parallelize in this project, like e.g. the computation of univariate statistics for trail or area 
units. 
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4.5 Effect of flight planning and data processing on the detection 
accuracy and suitability of drone data compared to aerial data 

 
The raw drone photos were re-analyzed and rectified using ODM (see chapter 4.1), resulting in 
multiple layers that in the future could be captured for new areas and used in the model if they 

show promising results. The original drone dataset consisted of photos captured using two sep-
arate drones, Phantom 4 Pro and Phantom 4 Multispectral. The layers that were analyzed to 
compare data are the RGB orthophoto, NDVI (created from the multispectral data), digital terrain 
model (DTM) and aerial photos from the Norwegian orthophoto program captured 23.7.2017.  
 
The multispectral data covered a slightly smaller area, meaning that there are some areas with-

out NDVI in the following comparisons. The drone photos were captured 7.10.2020, more than 
three years after the aerial photos. This makes a direct comparison between drone photos and 
aerial photos more difficult, as the ground-truth might have changed significantly between the 
photos. 
 
In this project the machine learning model has only been trained, tested and validated using 
either orthophoto captures by drone or aerial photography captured in the Norwegian orthophoto 

program. In addition, we have created NDVI and DTM to see if they have potential to give useful 
information to the models in the future. 
 
Figure 30 shows a comparison of drone photos and aerial captured at separate times. There 
are new tracks produced after the aerial image was taken. The tracks are clearly visible also on 
both orthophoto and NDVI, and neither one is likely to give information to the model that the 
other one doesn't also give. However, here the DTM is of decent quality, making is possible to 

extract a depth measure. 
 

 

Figure 30. Comparison between different layers. Orthophoto from drone, NDVI and DTM pro-
duced from drone imagery. Aerial image from the Norwegian orthophoto program.  

 
The following Figure 31 illustrates differences between drone imagery and data from the Nor-
wegian orthophoto program with regards to their ability to capture wheel ruts in detail. Between 
the photos parts of the tracks have also been filled with gravel. In the grass-covered area in the 
middle of the photos there are tracks visible in both datasets. Surprisingly, the different layers 
visualize different parts of the tracks with differing clarity. In this case the DTM even shows a 
clear track to the top right which is difficult to spot in any other layer. In the middle part the NDVI 

and orthophoto visualize different parts better, but in general the drone based orthophoto shows 
the better accuracy overall. The tracks in the middle section are partly covered by gras, which is 
a likely reason for why it is not so clearly picked up by the NDVI signal. 
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Figure 31. Example of differences between the available data sources 

 
A good example for where aerial imagery can be adequate for detecting wheel ruts is shown in 

Figure 32. A large open area with well-established tracks. This view was outside of the multi-
spectral coverage, so we don’t have NDVI. The DTM however is very poor and full of artifacts. 
Most likely this is due to too low overlap between drone photos in addition to few recognizable 
features for the orthorectification algorithm. This will result in too few usable photos covering 
each pixel for the algorithm. 
 

 

Figure 32. Example both drone and aerial imagery capture wheel ruts quite well 

 
Another example of an area  with poor quality in the DTM is shown in  Figure 33. The issues are 
again likely due to too little overlap between neighbouring drone images and few features in 

these open areas that can be used in the processing algorithm to identify common points in the 
images. 
 

 

Figure 33. Example of artefacts in the created DTM 

 
A location where all data sources visualise tracks quite well is shown in Figure 34. The DTM is 
of medium quality with quite a few artifacts but still captures at least arts of the tracks. One take-
away from this example how trees affect the ability to detect wheel ruts depending on the timing 
of image acquisition. The aerial photos were captured during the summer, while the drone flights 
were conducted during the autumn. This means that there are more leaves on the trees on the 



NINA Report 2137 
 

48 

aerial photographs, which both disrupts views in some areas and also casts bigger shadows in 
sunny conditions especially with lower sun angles. 
 

 

Figure 34. Example of another location where all data sources capture wheel ruts quite well 

Images in Figure 35  show a trail instead of a track. The DTM is again of poor quality, but here 
also the orthophoto shows a blurred area. This is a kind of artifact that is quite common in areas 
with to low overlap between drone photos or where the orthorectification model cannot find 
enough recognizable features to stich enough photos together. In this area, there are also a lot 
of trees, obstructing views of the trail from the aerial photos. Even though the orthophotos are 

blurred, it is possible to see the trail accurately both in or in the orthophoto and in NDVI. The 
NDVI is produced from another flight with a different drone, so the orthorectification might be 
better for it. 
 

 

Figure 35. Example how lack of overlap between neighbouring drone images affects the quality 
of generated orthophotos less than quality of respective terrain models. 

An example of an area where the tracks are only visible on the drone base orthophoto is shown 
in Figure 36. Tracks are also present in the aerial photos, but significantly harder to spot. The 
NDVI signal is again obstructed by gras covering the tracks, and DTM does not provide any 
useful signal for the present track. 
 

 

Figure 36. Example of an area where wheel ruts are more visible on the aerial image than on 
the drone orthophoto 
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The examples above (Figure 30 - Figure 36) illustrate that, both NDVI and DTM can provide 
some added value depending on the area and quality of the acquired data. 
 
A limiting factor for the usefulness of terrain models however is clearly the lack of homogenous 
quality in the available data. As discussed in chapter 4.1.2, in order for terrain models to be useful 

more effort would have to be put into safeguarding quality of the input data during image acqui-
sition and flight planning. With the quality of the available data in this project, adding terrain 
information into modelling has to be considered rather an additional source of error than a means 
to improve modelling quality. In that context it is also important to keep in mind that terrain models 
will not be available for aerial images so that adding those as an additional layer of information 
in a model will prevent possible transferability of a model between plane-based and drone im-
agery. At locations with good quality of the terrain models, there is however a possibility to use 

it to measure the depth of the tracks. Height of pixels in the tracks can be compared to pixels 
adjacent to the tracks and thereby give a crude depth measurement. 
 
In principle, NDVI from multispectral imagery may provide more frequently additional information 
compared to orthophoto that can be useful for identifying the location of tracks. However, as 
discussed in chapter 4.1.1, heterogeneity of quality within the produced mosaics limits also the 
usefulness of multispectral imagery in modelling. In addition, a different camera/drone is required 

to capture multispectral imagery. Those sensors regularly have a lower resolution so that the 
acquisition of multispectral images comes with a trade-off with regards to resolution of the RGB 
imagery (and in turn also possible DTM) and / or required time to cover comparable areas.  
 
Overall, even though terrain models and multispectral data from drone images can be beneficial 
in some cases, the additional effort in takes in collecting them with adequate quality makes it 
questionable to base the motivation for using drones on the availability of any of those additional 

layers of information. There are however two major reasons to conduct image acquisition with 
drones for monitoring wheel ruts: 1) drone imagery can provide more detailed and more timely 
data and 2) data acquisition can be conducted on-demand and at more suitable times of year 
compared to the Norwegian orthophoto program where images are usually taken during summer. 
 
 

4.6 Recommendations for drone type and mission planning for 
wheel rut detection 

 
Detection of wheel ruts are sensitive to both weather conditions and time of year. Both drone 
photos and aerial photos are harder to use when acquired at low sun-angles and with a lot of 
shadows in the photos. In summer, both high grass and leaves might obstruct the view on wheel 

ruts, making them more difficult to recognize. It is also likely that wheel ruts to a large extent are 
created in connection with moose hunting in the autumn, and therefore are fresher and easier to 
discover in photos from that time of year. Timing of the flight might therefore be the most im-
portant than details regarding mission planning.  
 
That said, for future drone missions, it is advisable to fly as high as possible while ensuring a 
sufficient ground sampling distance. We have showed that a GSD of 5-7 cm is more than suffi-

cient as long as the models are well trained. There is no need to go for cheap multispectral 
cameras which generally do not provide much added information in our use-case and one has 
to compromise heavily either on the resolution or the overall flight time.  
 
If one wants depth measurements from the DTMs however, the quality of the DTM is very im-
portant. The quality in the data analysed here varied wildly within the dataset, usually due to lack 
of convergence for some areas in the orthorectification. The underlying reasons for this is likely 

slightly to low overlap between the original photos, in combination with large areas with little 
vegetation and therefore few(er) recognizable features. The quality of the DTM is also likely to 
decrease with decreased GSD, so to ensure good enough DTM one should ensure that the GSD 
is at least 5-7 cm and that the overlap between photos are at a minimum 70% in both directions. 
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This is also important to retain the same degree of high overlap to ensure that the georeferencing 
using RTK is as precise as possible. 
 
Practically there are many ways to achieve this. Below we describe one way to achieve these 
results for a larger area. 

 
Suggested drone: While the use of copter type of drones is somewhat more straightforward as 
these type of UAVs are more commonly available, for larger area coverage we would suggest 
the use of fixed wing UAVs. Amongst these, of particular interest are the vertical take-off and 
landing the Quantum System Trinity F90+ UAV is an example. This UAV has an autonomy of up 
to 90 minutes and allows for vertical take-off and landing which is useful in situations where there 
is limited space for take-off and landing. Furthermore this UAV allows for deploying a variety of 

payloads ranging from high resolution cameras to lidar sensors. 
 
Suggested sensor: The suggested sensor depends of the possibility to perform UAV operations 
at altitudes > 120 m. When this is possible it is advisable to utilize very high resolution sensors 
such as the Sony RX1R II, which with its 42.4 MP allows for obtaining high resolution imagery 
even at high altitude (e.g. resolution of 5 cm at 400 m of altitude). In situations where the drone 
operators are limited to flying below 120 m above ground then the use of such high resolution 

sensors is not advisable as it would produce excessively detailed imagery with negative conse-
quences on storage space and processing speed. In such situations one could rely on cheaper 
sensors like the Sony UMC-R10C RGB camera (20.1 MP), which would produce satisfactory 
results at 120 m while limiting the data volume. 
An interesting alternative to RGB cameras would be the use of a laser scanning sensor such as 
the Qube 240, which would provide active 3D measurements of the surface of greater quality 
compared to the photogrammetric 3D models from the RGB camera. This would on the other 

hand require the develop a new type of AI model to be trained on these new data. 
 
Suggested flight parameters: as for the previous it all depends on the operators’ licence and 
his/her possibility to fly above 120 m above ground. Where that is possible the efficiency of the 
operations would be greatly enhanced as with the same amount of time one can cover a sub-
stantially larger area. Given that the interest is to survey wheel rut damages and not vegetation, 

to boost the flight plan efficiency it is suggested to fly with a 70% forward and 70% lateral overlap. 
This would produce enough imagery to ensure the reconstruction of a suitable ortho-mosaic. No 
need for double grid pattern. A orthodiagonal grid pattern could be used to further increase the 
quality of the DTM, but as it halves the area covered it is not recommended. A more time efficient 
method to ensure a better performing DTM is to increase the overlap to around 80%. Higher 
altitude will also reduce the details in the DTM, regardless of the sensor used. 
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5 Conclusions, recommendations and further 
development 

 
 
Results show that the initial models developed in this project produce fair to good results for both 
plane- and drone based imagery in both study sites. Models utilizing drone data perform slightly 

better than models based on aerial images with regards to correctly capturing wheel ruts, where 
drone imagery based models capture more details but currently also show a larger degree of 
noise and scattered false positive classifications. Models from aerial images perform best in open 
areas, they struggle though in forested areas. 
 
While the current models provide an initial understanding of the quality of the detection from 
drones and orthophotos, it is important to keep in mind that the amount of training data used in 

this study case was limited to two study areas and to two images taken under seasonal, uniform 
atmospheric and lighting conditions. A full deployment of the models developed in this project 
does not ensure the transferability to new image data acquired in different seasons, and under 
varying atmospheric and light conditions. Thus, further development of the current work would 
need to focus on the expansion of the images and annotations used to train the model. This 
would have a twofold effect: 1) improve the model detection accuracy since it would be trained 

on a larger set of data; and 2) improve the transferability of the model to new data. 
 
Based on the results from reprocessing of the raw drone images, it can be concluded that fea-
tures that are specific to targeted image acquisition with drones like the production of photogram-
metric terrain models or multispectral images pose challenges with the regards to creation of 
data with a homogenous quality and sufficient collocated geometry. Reliable monitoring of trail 
depth over time by means of comparing photogrammetric terrain models appears to be an un-

dertaking that for larger extents like in this study does not seem to yield in reliable results, at 
least not without significant extra effort during data acquisition and processing. The main moti-
vation for using drones for monitoring wheel ruts from ATVs should thus be the timely generation 
of monitoring data. Annotated training data for the Balsfjord study area showed an increase of 
wheel ruts in that area by ~100 % (or 8 km in total) in the four years between 2016 to 2020. This 
underpins the value of drone campaigns for timely response in case of known or reported off -
road driving activities, where the 5 to 10 years repetition cycle of the Norwegian orthophoto pro-

gram might not yield timely enough data. The benefit of drone imagery lies thus in a more detailed 
understanding of the current situation as well as a finer resolution analysis. Drone data can 
therewith be seen as an on-demand technology that is complementary to aerial images that are 
taken on a regularly basis for the Norwegian orthophoto program. Under an operational scenario, 
once the critical areas have been identified, drones could be deployed to capture updated im-
agery and the drone model used to predict the current situation of ATV damages. Results of the 
project give reason to believe that images from the Norwegian orthophoto program in the other 

han can valuable to perform an initial screening of areas where ATV damages are present. Such 
screening process can help identifying the geographic location of areas that are under threat of 
potential new damages. 
 
The fact that prediction results for higher resolution drone images perform only slightly better in 
detecting wheel ruts compared to aerial images suggest that in further improvement a more sys-

tematic evaluation of the effect of image resolution should be conducted. In that context also 
ultra-high resolution satellite images that now a days can deliver up to 30 cm resolution (and up 
to 15 cm resolution after software based image enhancement) may be considered as a third, 
additional data source. 
 
Another, though related branch of further research in the subject should investigate whether it 
would be feasible and adequate from an end-user point of view to consolidate the deep learning 

models that currently are different for drone and aerial imagery, into one coherent model in order 
to reduce the maintenance effort and at the same time increase the amount of both training data 
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and imagery the model could be trained with. In addition, recent methods to limit the required 
amount of test- and training data, like Few-Shot Learning (see e.g. Wang et al. 2020) should be 
explored in order to increase the practical applicability in a monitoring context.  
 
Images from the Norwegian orthophoto program should thus be a natural starting point in order 

to increase the amount of training data and therewith the number of conditions the model is 
trained with. When collecting new training data a critical aspect to be considered is the potential 
variation in aerial imagery in respect to seasonality, atmospheric, and illumination conditions. For 
this, one would have to collect a large enough sample of ortho-mosaics that can cover this range. 
A potential approach could be to start by selecting 10-20 ortho-mosaics collected during spring, 
summer, and autumn with both leaf on and leaf off conditions. Given that it is impossible to define 
a specific number of annotations required to obtain a satisfactory model, one would have to adopt 

an iterative approach based on the following steps: 

• Annotated a batch of 5 ortho-mosaics covering a range of variation in terms of season-
ality and covering different geographical areas. Concerning the proportion of the area to 
be covered (i.e. amount of annotated data) one would ideally want to annotated the entire 

area. In situations where the funding for annotation is limited then one would adopt some 
sampling techniques to select areas for annotation. In such case, however it is important 
to ensure that the areas to be annotated are large enough to ensure the presence of 
ATV wheel rut damages. 

• Split the annotated data into a training and validation batch 

• Retrain the model using the existing training data plus the new training data from the 
previous step. 

• Evaluate the model’s performance using the old plus the new validation data.  

• In case more precise results are needed then repeat the steps above. 
 
If it was possible to consolidate the modeling approach to one cross-sensor model independent 
of the sensor, also flight planning for drone campaigns could be slightly adjusted to produce data 
that is more comparable to data from the Norwegian orthophoto program. This also holds the 
potential to increase the efficiency with that drone campaigns can be conducted, both with re-
gards to data capturing and processing, as larger areas can be covered. 
 

Results of the project show that post-processing of the modelling results is both needed, able to 
improve the quality of the final products and that it can produce condensed and more usable 
representations of the results. Further technical improvements of the post-processing should 
cover remaining filtering issues like those at image boundaries along with technical details men-
tioned in chapter 4.4.5. In terms of methodology, the classification of the results with regards to 
the severity of damages to esp. soil / terrain should undergo systematic evaluation and re-ad-
justment if needed. 

 
Technically, in order to make the results more directly applicable by managers, the workflows for 
the deep-learing steps should be further wrapped or consolidated in order to further reduce the 
need for manual interaction. To that ends, utilization of publicly available frameworks or even 
multi-framework wrappers (like Pesek 2022) can be considered. 
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