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A B S T R A C T   

LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 
3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem 
condition accounts, and an important basis for ecosystem service modeling and valuation. However, using 
available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example 
engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in 
ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 
2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for 
general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of 
tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees 
between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree 
canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree 
canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and 
special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate 
decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, 
with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the 
changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study 
demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using 
general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem 
service accounting in urban environments, we recommend that municipalities implement data acquisition pro
grams that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy 
detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote 
sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done 
within a cloud-computing environment to ensure sufficient geoprocessing capacity.   

1. Introduction 

Urban municipalities are constantly challenged in their policy 
development and spatial planning by the need for densification and 
extension of the built-up area. These needs arise as a general conse
quence of urbanization and are often constrained by parallel needs for 
stronger protection and preservation of green infrastructure, and its 
ecological condition, both within and beyond the built-up area (Art
mann et al., 2019a; Artmann et al., 2019b). 

Urban tree canopy is an important component of the urban and semi- 

urban vegetation. Mapping of individual tree canopies thus addresses 
several purposes, including ecosystem accounting (Gómez-Baggethun 
and Barton, 2013). Ecosystem accounting used in combination with 
other municipal accounts can contribute to a wider set of indicators for 
reporting and assessment of climate, environmental and welfare policy 
(Hanssen et al., 2019). Ecosystem accounts can contribute to awareness 
of changes in green infrastructure. In particular, tree canopy cover is a 
key indicator of urban ecosystem condition and a predictor of recrea
tional and regulating ecosystem services integrated within ecosystem 
accounting (Venter et al., 2020; Nowak et al., 2017; Obst et al., 2017; Li 
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et al., 2014; Chen et al., 2018; Kabisch et al., 2019). 
In their discussion of the application of ecosystem accounting in 

urban areas, Wang et al. (2019) highlight the need for identification of 
ecosystem assets as the basic spatial units that are standard in landcover 
mapping for national ecosystem accounts based on remote sensing. 
Modeling of regulating ecosystem services of urban trees requires ac
curate detection of the individual tree canopies and their characteristics. 
High-precision tree canopy maps will therefore reduce the estimation 
error, improve the accounting, valuation and change detection of sig
nificant ecosystem services, and help to increase their policy relevance. 
Individual tree canopy detection based on airborne and terrestrial 
LiDAR-scanning (Light Detection and Ranging) hold much potential for 
ecosystem service modelling (Cimburova and Barton, 2020), and has 
proven to obtain reliable high-precision 3D measurements of tree pa
rameters such as tree height, tree canopy area, volume, biomass, Leaf 
Area Index (LAI) and stand density (Matasci et al., 2018; Liu et al., 2017; 
Tanhuanpää et al., 2014). 

Ecosystem service modelling is required for biophysical quantifica
tion of ecosystem services (Zulian et al., 2018; Vallecillo et al., 2018). 
Quantifying greenviews for recreation (Li et al., 2015) requires 
modeling and visualization of the perspective from a specific user’s 
location towards the tree canopy (with its height and volume). Modeling 
tree condition as a basis for regulating services such as shading, requires 
data on the geolocation of individual trees in relation to buildings 
(Nowak, 2020a). Modeling individual tree canopy sizes instead of gen
eral tree canopy enables a more precise estimation of regulating ser
vices. Tree canopy density has also been shown to determine property 
prices (Escobedo et al., 2015; Mei et al., 2018). 

Existing vegetation extent accounts for Oslo’s built-up area (Oslo 
municipality, 2019) are based on infrared orthophoto, using the Nor
malised Difference Vegetation Index (NDVI) to account for the spatial 
distribution of vegetation in the built-up area. NDVI gives a very good 
planimetric measure of the size and spatial distribution of vegetated 
areas, but does not account for variables describing tree canopy char
acteristics (such as single tree canopy height, surface, and volume). Such 
variables may be surveyed by fieldwork or LiDAR-scanning. Manual 
field surveys of the entire Oslo built-up area would clearly be very costly, 
limited in both temporal and spatial coverage, and prone to human 
appraisal errors. Although segmentation of tree canopies from LiDAR 
point clouds within an urban environment have limitations 
(Tanhuanpää et al., 2014; La et al., 2015; Rahman and Rashed, 2015; 
Plowright et al., 2016; Ciesielski and Sterenczak, 2019; Hanssen et al., 
2019), and cannot entirely replace fieldwork in order to determine tree 
species and assess the health of individual trees, it is able to estimate the 
3D tree canopy structure, surface and volume. Tree canopy surface and 
volume relates to the Leaf Area Index (LAI) which is a key indicator for 
modelling regulating ecosystem services in the i-Tree Eco software 
application (Nowak, 2020b). 

While tree canopy detection using LiDAR is not new to remote 
sensing, it is a necessary innovation for urban ecosystem accounting. 
The most recent examples of urban natural capital accounting use 
remote sensing satellite imagery at a spatial resolution of 10 × 10 m. 
(Paulin et al., 2020). Identification of individual tree canopy areas and 
tree heights (Lof et al., 2019) provides the necessary precision for urban 
ecosystem condition accounting at property and street level, as well as 
for tree valuation modeling (Randrup, 2005; Nowak et al., 2017). Pe
riodic high-resolution urban tree mapping using LiDAR contributes to 
cost-effective inventoring, monitoring and planning that accounts for 
both public and private tree canopy as part of integrated urban forestry 
governance (Miller et al., 2015; Klobucar et al., 2020). 

The objective of this paper is to demonstrate both the potential and 
the limitations of using existing LiDAR data scanned for general pur
poses, to improve extent and condition mapping in urban ecosystem 
accounting. We demonstrate how LiDAR-based segmentation of urban 
tree canopies and identification of their physical condition in terms of 
canopy height, canopy diameter, 3D surface and volume can be a 

replicable, complementary and useful information source for urban 
ecosystem condition accounting as a basis for ecosystem service 
modeling. We further assess the usefulness and uncertainty of using 
general purpose LiDAR data for policy and planning by compiling ac
counts of tree canopy change (2011, 2014 and 2017) for the Oslo built- 
up area and the policy focus area of the Oslo municipality Small House 
plan, which is subject to urban densification and tree felling regulations. 
The LiDAR segmentation is validated with field data from the Oslo 
municipal tree point database (Cimburova and Barton, 2020) and a 
reference dataset derived from orthophoto at spatial resolutions span
ning from 0.08 to 0.4 m (The Norwegian Mapping Authority, 2020a). 
Finally, we discuss potential methodological improvements for future 
ecosystem accounting in Oslo municipality. 

2. Material and methods 

2.1. Study area 

The study area for this paper is the built-up area of Oslo (Fig. 1). The 
city of Oslo (59.91◦ N, 10.74◦ E) is the capital of Norway and had 697 
010 citizens in January 2021. 

The municipality of Oslo covers 454 sq.km and is characterized by its 
proximity to nature and rich biodiversity. About two-thirds of the 
municipality’s area consists of forests, greenery, and water areas (The 
Norwegian Mapping Authority, 2020b). 

The City Council of Oslo, Norway, launched in 1997 their first Small 
House plan (Oslo municipality, 2018) to ensure that the City Council’s 
decision on further densification and development projects are done in 
the best possible way, securing that architectural and environmental 
qualities of established detached house areas are taken good care of. The 
plan aims to preserve existing terrain and vegetation to the greatest 
possible extent and ensure that larger trees are not cut, unless special 
permission is granted (Oslo municipality, 2018). 

To monitor changes in the vegetation cover, the municipality of Oslo 
presented in 2019 their first vegetation extent account - also known as 
‘green account’ - in the city’s built-up area based on infrared orthoi
magery (Oslo municipality, 2019). The account revealed that 47% 
(68 sq. kilometers) of the built-up area is covered by vegetation, whereas 
only 27% (40 sq. kilometers) of the built-up area is regulated for green 
land-use purposes such as parks, sport areas and recreational areas (Oslo 
municipality, 2019). Due to the establishment of new green areas inside 
new residential areas, there was a four percent increase in the regulated 
green areas from 2013 to 2017. In the same period, there was a three 
percent reduction in the unregulated green areas, mainly due to densi
fication in the areas included in the Small House plan. Parallel to this 
municipal green accounting, the Urban Experimental Ecosystem Ac
counting research project (URBAN EEA, 2020) tested out alternative 
remote sensing methods by means of LiDAR and Sentinel-1 and 2 sat
ellite imagery (ESA, 2020) for the built-up area of Oslo, to account for 
changes in the extent, ecological condition, supply, use and monetary 
valuation of the urban and semi-urban vegetation. 

2.2. Tree canopy segmentation 

There are two main methods for segmentation of tree canopies and 
their physical properties from LiDAR point clouds (Tanhuanpää et al., 
2014). The Area-based method uses statistical dependencies between the 
LiDAR-parameters, such as relative and absolute height of laser echoes 
compared to field-surveyed forest variables (Næsset, 2009). The Indi
vidual Tree Detection method segments tree canopies either directly from 
the LiDAR point cloud (ESRI, 2020b) or indirectly from a LiDAR-derived 
canopy height model (Zhang et al., 2015). A range of individual tree 
detection methods has been developed to segment tree canopies from a 
canopy height model, all being favored for their raster geoprocessing 
capacity (Zhang et al., 2015). 

Individual Tree Detection methods are sensitive to a range of factors 
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(Tanhuanpää et al., 2014; La et al., 2015; Rahman and Rashed, 2015; 
Plowright et al., 2016; Ciesielski and Sterenczak, 2019). First, temporal 
difference in data acquisition for field data and LiDAR data may hamper 
the detection precision of single tree canopies (Tanhuanpää et al., 2014). 
Second, applying a single segmentation algorithm and LiDAR point 
cloud may introduce some under- and oversegmentation due to the 
urban tree canopy‘s mixed stand, variation in shape and size, individual 
growth patterns, different light conditions and human activities modi
fying the tree shapes (Ciesielski and Sterenczak, 2019). Third, single tree 
detection in an urban environment is constrained by a range of technical 
infrastructures that may confuse the algorithms in their separation of 
true and false tree canopies (Tanhuanpää et al., 2014). According to 
Ciesielski and Sterenczak (2019) the accuracy of the different tree 

canopy segmentation methods ranges from 69% (Rahman and Rashed, 
2015) to 99% (Plowright et al., 2016). Several studies have found that 
the accuracy of LiDAR-measured tree canopy area often is less accurate 
than the accuracy of LiDAR-measured tree height (Gill et al., 2000; 
Popescu et al., 2003). This issue may be caused by low point cloud 
density, the tree canopy shape itself and the overlap with adjacent tree 
canopies (Zhang et al., 2015). The accuracy of tree height relies, ac
cording to Stereńczak et al. (2008), on factors such as flight and data 
acquisition parameters, tree species, data processing technology and the 
method used for individual tree identification. Mielcarek et al. (2018) 
found that when segmenting from a high-density LiDAR point cloud, the 
height error is greater for complex, irregular deciduous canopies (such 
as oakes) than for conifers, due to the compact and cone-shaped form of 

Fig. 1. The study area.  

Fig. 2. The tree canopy segmentation workflow.  
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coniferous trees. It has also been observed that estimation of tree heights 
is sensitive to flight heights during laser scanning (Morsdorf et al., 
2008). 

2.3. The segmentation workflow 

The tree canopy segmentation was performed with ArcGIS 10.6 
Spatial Analyst (ESRI, 2019a) according to the workflow illustrated in 
Fig. 2. 

2.4. The LiDAR point clouds 

We downloaded the tiled LiDAR point cloud data for 2011, 2014 and 
2017 (see Table 1) from the national archive for elevation data in 
Norway (The Norwegian Mapping Authority, 2018) and merged the data 
tiles into one LAS Dataset per city region per year to ease processing time 
and processor requirements. 

2.5. Modelling the canopy height model 

The Canopy Height Model (CHM) is the vertical difference between 
the Digital Terrain Model (DTM) and the Digital Surface Model (DSM). 
To reduce the geoprocessing overhead we chose to interpolate the tiled, 
yearly point clouds for each city region into integer DSM and DTM 
rasters with a spatial resolution of 0.5 m. The DSM was interpolated 
from unclassified and low-medium–high vegetation points (ASPRS code 
3, 4 and 5 only available in the 2011 dataset) using a Binning interpo
lation type with a Maximum Cell Assignment Type and a Linear Void Fill 
method (ESRI, 2019c). As shown in Table 1, we were restricted to using 
unclassified points (ASPRS code 1, unassigned) to interpolate the DSM 
rasters for 2014 and 2017. The DTM was interpolated using ground 
points (ASPRS code 2) and the Binning interpolation type with an 
Average Cell Assignment Type and a Linear Void Fill method (ESRI, 
2019c). For each year and city region, the DTMs were subtracted from 
the DSMs to derive the CHMs (Fig. 3, left panel). Due to the lack of NDVI- 
data and classified vegetation points in the 2014 and 2017 point clouds, 
we applied a Triangular Greenness Index (TGI) vegetation mask 
(Hanssen et al., 2019; Hunt et al., 2013) derived from RGB values in the 
2011 and 2014 LiDAR point clouds (Fig. 3, right panel). Due to the lack 
of RGB values in the 2017 LiDAR point cloud (see Table 1) we were 
restricted to use the 2014 TGI vegetation mask also for 2017. 

2.6. Smoothing and filtering the CHM using a Local Maxima search filter 

To smooth and filter the vegetation- masked CHMs and find Local 
Maxima (Franceschi, 2017), we utilized a circular neighborhood search 
filter with a diameter of 3 m, enabled in the Maximum Statistics function 
of the ArcGIS 10. 6 Focal Statistics tool (ESRI, 2019d). The diameter of 
this filter was used as a proxy based on visual inspections of tree can
opies in orthophotos and from best practices described in literature 
(Barnes et al., 2017). However, a search filter of 3 m will probably have a 
best fit for larger tree canopies. In addition, it is challenging to find a 
perfect search filter size as this varies locally and often is determined by 
species-specific morphological structures of the different tree species. 

2.7. The watershed segmentation method 

For the segmentation of individual tree canopies, we utilized a 
watershed segmentation method (Pyysalo et al., 2002; Suárez et al., 
2005). This segmentation method belongs to the Individual Tree 
Detection method category and assumes that the form of an inverted tree 
canopy resembles a watershed and has been applied in several studies 
(Chen et al., 2006). Conceptually, this method can be described as 
gradually filling several basins with water. Where the water of adjacent 
basins connects, a boundary is detected, and as the water level rises, 
these boundaries outline each drainage basin (Beucher and Lantuéjoul, 

1979). The watershed segmentation method was applied to the vege
tation masked and filtered CHMs, which were negated to imitate wa
tersheds. To calculate the flow direction from each pixel in the negated 
CHMs, we utilized the ArcGIS 10.6 Flow Direction tool (ESRI, 2020e) 
and the inherent eight-direction (D8) flow model (Jenson and Dom
ingue, 1988) that assumes that there are eight valid output directions 
representing the eight neighboring pixels into which a flow could travel. 
We used the ArcGIS 10.6 Focal flow tool (ESRI, 2020f) to identify the 
drainage points (resembling the treetops) and the ArcGIS 10.6 Water
shed tool (ESRI, 2020g) to delineate the watersheds (resembling the tree 
canopies). The result of the watershed segmentation of tree canopies 
from the 2014 LiDAR point cloud data is illustrated in Fig. 4. Finally, the 
segmented tree canopies for 2011, 2014 and 2017 were masked for false 
trees using a detailed infrastructure and building map from 2011. Un
fortunately, we did not have access to such maps for 2014 and 2017 and 
were therefore constrained to use the 2011 mask for all three years. 

2.8. Calculating the tree canopies geometrical 3D surface and volume 

To estimate a proxy indicator for urban ecosystem condition related 
to regulating ecosystem services and correlated with field observations 
of tree canopy in the i-Tree Eco tool suite (Nowak, 2020a), we calculated 
the simplified geometrical 3D surface area and volume of each 
segmented tree canopy. The simplified geometrical 3D surface area (S 
geom) (Nowak, 1996) was calculated according to equation (1): 

Sgeom =

(
π*D*(H + D)

2

)

(1)  

Where D is the minimum bounding circle diameter around each 
segmented tree canopy and H is the segmented tree top height. The 
simplified volume of the tree canopies was calculated using the standard 
formula for the volume of a cone, according to equation (2): 

Volume =
1
3
*π*r2*h (2)  

Where r is the radius derived from the minimum bounding geometry 
diameter of each segmented tree canopy and h is the height of each 
segmented tree. 

2.9. Ecosystem accounting 

We tabulated extent-condition accounts for tree canopy by tree 
height segment in aggregate for the city, and mapped change to a basic 
spatial reporting unit of 0.25 square km2 corresponding to Statistics 
Norway mapping grid (Strand and Bloch, 2009). We also mapped 
change in tree canopy at census tract and city district level to demon
strate alternative reporting units of relevance to the municipality of 
Oslo. 

2.10. Validating the tree canopy segmentation 

We validated the tree canopy segmentation results against available 
field data (municipal tree point database for managed trees) and land 
cover reference datasets manually digitized from orthophotos. 

First, we compared the results of tree canopy segmentation from the 
2014 LiDAR point cloud data with a concurrent version of a spatial 
database of trees managed by the Oslo Urban Environmental Agency. At 
the time of the validation, this database contained, 29 928 trees recor
ded over several years of the agency’s sub-contracted planting and 
management (Cimburova and Barton, 2020). The registered trees in the 
database are represented as points with associated attributes (stem co
ordinates, species names, stem diameter and/or circumference and 
condition indicators). We performed this validation as a simple overlay 
analysis, counting the number of tree points that intersected the closest 
segmented tree canopy polygon. 
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Next, we compared the LiDAR segmentation results from 2014 and 
2017 with a reference land cover dataset digitized manually using visual 
interpretation of very high resolution orthophotos captured in April- 
May 2015 for 93 sampling plots (90 × 90 m.) across the Oslo built-up 
area. As matching years were unfortunately not available, the refer
ence datasets closest to the year of the LiDAR data, namely 2015, was 
used. The root mean square error (RMSE) and mean difference (mDiff) 
were calculated to compare the segmented tree canopy area with the 
tree canopy area of the reference dataset in 2015. The RMSE (Eq. (3)) is a 
measure of the absolute accuracy in the model, while the mean differ
ence (Eq. (4)) reports the bias or presence of systematic errors in the 
model. RMSE and the mean difference were calculated using the 
following equations: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
θi − θ̂i

)2

n

√
√
√
√

(3)  

mDiff =

∑n
i=1

(
θi − θ̂i

)

n
(4)  

where θi is the reference tree canopy area for plot I, θ̂ i is the LiDAR tree 
canopy area for the same plot and n is the number of plots. The relative 
RMSE and relative mean difference were calculated as the percentage of 
the mean reference value. 

3. Results. 

3.1. Tree canopy statistics 

3.1.1. The built-up area 
The results of tree canopy segmentation from LiDAR point cloud data 

for 2011, 2014 and 2017 in the Oslo built-up area indicate a general 
increase in the number of trees taller than 15 m (Fig. 5). The number of 
trees within the 6–10 m height class has remained relatively constant in 
the period 2011–2017, probably as an effect of active management of 
urban tree canopies. Tree height, 2D- and 3D tree canopy area and 
volume statistics are displayed in Table S1 in the supplementary mate
rial section of this paper. 

Tables 2 and 3 present the relative and absolute changes in 2D tree 

Table 1 
Acquisition month, point density, ASPRS point classification and RGB colour information for the three LiDAR point clouds.   

Acquisition month Min. point density per m2 Mean point density per m2 ASPRS point classification RGB- colour 

Oslo 2011 July 5 43 1-2-3-4-5-7-9-10-24 Yes 
Oslo 2014 June/July 10 25 1-2-7-10 Yes 
Oslo 2017 August Unknown 10 1-2-7-10-13 No  

Fig. 3. The CHM (left panel) and the TGI vegetation mask (right panel) for 2014.  

Fig. 4. The result of the watershed segmentation of tree canopies (outlined in red) compared to the TGI vegetation mask (left panel) and orthophoto (right panel), all 
originating from the same 2014 LiDAR point cloud data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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canopy area and tree canopy volume per height band in Oslo built-up 
area, with both additions (blue) and losses (red) to the “tree canopy 
cover assets” during the accounting period. 

Changes in 2D tree canopy area per height band aggregated to the 
basic spatial statistical unit of 0.25 square km2 defined by Statistics 
Norway (Fig. S1), census districts (Fig. S2) and city regions (Fig. S3) are 

Fig. 5. Tree canopy height (in m) in the Oslo built-up area. The y-axis represents the number of trees and the x-axis represents identified tree canopy height.  

Table 2 
Combined extent-condition accounting table for 2D tree canopy area in the Oslo built- up area.  

Tree height band 3–5 m 5–10 m 10–15 m 15–20 m 20–25 m 25–30 m 30–35 m 35–40 m 3–40 m 

Change 2011–2017 (%)  34.08  5.37  8.73  14.91  23.58  37.00  61.76  30.76  17.15 
Total 2011 (daa)  257.79  4814.76  8385.3  12537.7  9568.47  3288.69  523.03  78.39  39454.13 
Additions (daa)  47.82  241.37  771.33  1916.48  1887.6  917.22  240.71  8.22  6030.73 
Losses (daa)  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
Total 2014 (daa)  305.61  5056.13  9156.63  14454.18  11456.06  4205.9  763.74  86.61  45484.86 
Additions (daa)  40.03  17.21  0.00  0.00  368.59  299.56  82.29  15.89  736.87 
Losses (daa)  0.00  0.00  − 39.15  − 47.56  0.00  0.00  0.00  0.00  0.00 
Total 2017 (daa)  345.64  5073.34  9117.48  14406.63  11824.65  4505.46  846.03  102.5  46221.73  

Table 3 
Combined extent-condition accounting table for tree canopy volume in the Oslo built- up area.  

Tree height band 3–5 m 5–10 m 10–15 m 15–20 m 20–25 m 25–30 m 30–35 m 35–40 m 3–40 m 

Change 2011–2017 (%)  37.18  6.80  9.43  15.63  24.18  38.34  61.70  35.35  21.35 
Total 2011 (Mill. m3)  0.59  22.37  66.22  141.37  140.95  59.79  11.59  2.12  444.97 
Additions (Mill. m3)  0.12  1.14  6.00  21.61  27.20  16.95  5.22  0.14  78.38 
Losses (Mill. m3)  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
Total 2014 (Mill. m3)  0.70  23.50  72.22  162.98  168.15  76.75  16.80  2.26  523.37 
Additions (Mill. m3)  0.10  0.38  0.25  0.49  6.87  5.97  1.93  0.61  16.60 
Losses (Mill. m3)  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
Total 2017 (Mill. m3)  0.81  23.88  72.47  163.46  175.02  82.72  18.74  2.87  539.97  

Fig. 6. Tree canopy height (in m) in the Small House plan area. The y-axis represents the number of trees and the x-axis represents identified tree canopy height.  
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reported in the supplementary material section of this paper. Different 
spatial aggregation units lead to different conclusions about the spatial 
distribution of tree canopy loss and regeneration. 

3.1.2. The Small House plan area 
In contrast to the built-up area, our results indicate that the Small 

House plan area had a large increase in small trees below 10 m, and a 
decrease in tall trees above 10 m in the period 2011–2017. See Fig. 6 and 
Table S2 in the supplementary material section of this paper. 

Tables 4 and 5 presents the relative and absolute changes in 2D tree 
canopy area and tree canopy volume per height band for the Small 
House plan area, with additions (blue) and losses (red) to the “tree 
canopy cover assets” during the accounting period. 

Fig. S4 in the supplementary material reveals the spatial distribution 
of net loss and gain of tall trees across the Small House plan area in the 
accounting period. Using this management area as a reporting unit we 
reach different conclusions than for Oslo as a whole. This is explored 
further in the discussion section. 

3.2. Validation 

3.2.1. Comparison with the municipal tree point database for managed 
trees 

We found that the results of tree canopy segmentation from the 2014 
LiDAR point cloud data have an unexpectedly low representation of the 
registered geolocations for trees from the municipal tree point database 
for managed trees. Only 69% of the registered tree points in the 
municipal tree database coincided with a segmented tree canopy poly
gon (Hanssen et al., 2019). Geolocations of trees recorded in the 
municipal tree point database have been recorded manually using aerial 
photographs and tree top points based on the 2011 LiDAR data from the 
Planning and Building Agency. None of the tree points have been veri
fied using ground-based GPS measurements, and therefore the accuracy 
of geolocations in the municipal tree point database is unknown1. 

3.2.2. Comparison with reference datasets derived from orthophotos 
The validation showed that for 93 reference plots, the segmentation 

models tend to overestimate the tree canopy area (Fig. 7). The model for 
2014 overestimated the tree canopy area by 32.61% (Relative RMSE 
19.98%, mean difference 0.06 ha). The 2017 segmentation model had 
the best fit for the 2015 reference data, with a relative RMSE of 0.25% 
and a relative mean difference of − 16.38% (see Table 6). 

4. Discussion 

Segmentation of single tree canopies from LiDAR point clouds has 
proven to obtain reliable high-precision 3D- measurements of tree pa
rameters such as tree height, tree canopy area, volume, biomass, Leaf 
Area Index (LAI) and stand density (Matasci et al., 2018; Liu et al., 
2017). In our study we have demonstrated the potential and limitations 
of using publicly available, LiDAR data scanned for general purposes, to 
improve the accuracy and precision of urban ecosystem accounting. In 
addition, we have also estimated, validated and discussed how tree 
canopy segmentation based on such data can provide replicable, com
plementary and useful information for urban ecosystem condition ac
counting as a basis for ecosystem service modeling. The usefulness and 
uncertainty of using LiDAR for policy and planning have also been 
assessed by compiling accounts of tree canopy change (2011, 2014 and 
2017) at single tree level for the Oslo built-up area and the policy focus 
area of the Small House plan, and aggregating into different reporting 
units (statistical grids, census districts and city regions). 

4.1. Interpretation of results 

Our results indicate a general increase in the number of tall trees >
15 m in the built-up area. The number of small trees < 15 m also seems 
to have a moderate increase, except for trees between 6 and 10 m which 
seem to remain relatively constant over the period 2011–2017. In this 
period, the built-up area had a 17.15% increase in the tree canopy area 
and a 21.35% increase in the tree canopy volume. For the Small House 
plan area, our results show a large increase in small trees < 10 m, a 
decrease in tall trees > 10 m, an overall 1.04% decrease in the tree 
canopy area and a 2.13% decrease in the tree canopy volume. 

4.2. Methodological considerations 

4.2.1. Validation of the segmentation accuracy 
Validation of the segmentation accuracy relies on relatively con

current acquisition of both field data and LiDAR data (Tanhuanpää 
et al., 2014). Our study unfortunately suffers from a lack of such 
temporally and spatially coherent field data. The only field data we had 
access to was a small municipal tree point database for managed trees 
from the Oslo Urban Environment Agency. Comparing a concurrent 
version of this database (in total 29.928 tree points) with the 2014 
segmented tree canopies (in total 402 610 polygons) showed that 69% of 
the managed trees intersected with segmented tree canopy polygons. 
Even though the database only accounts for a small subset of all trees in 
the Oslo built-up area in 2014, the identified segmentation accuracy 
level for the managed trees is in the lower end of comparability with 
other studies where the tree canopy segmentation accuracy ranged from 
69% to 99% (Ciesielski and Sterenczak, 2019). Compared to the refer
ence dataset from 2015, the LiDAR-based tree canopy segmentation 
model seems to overestimate the tree canopy area. The segmentation 
model performed better in 2017 than in 2014. The validation procedure 
was important for understanding how much error was introduced into 
the extent accounts. Our results indicate that the segmentation model 
may contribute around 0.06 and 0.03 ha more tree canopy cover to the 
ecosystem accounts for 2014 and 2017, respectively. 

4.2.2. Factors that may have influenced the segmentation accuracy 
The overestimation described above (in section 4.2.1) is more likely 

influenced by several factors such as the use of one single watershed 
algorithm, single point clouds, a single fixed Local Maxima filter and the 
lack of proper concurrent correction masks for vegetation, technical 
infrastructures and buildings. In addition, segmented tree canopies with 
an irregular form will get an accordingly increased minimum bounding 
circle diameter and a following overestimation of the tree canopy area 
and volume. 

Several studies have found that segmentation accuracy of tree can
opy area size often is less accurate than the accuracy of the tree canopy 
height (Gill et al., 2000; Popescu et al., 2003). According to (Zhang 
et al., 2015) this may be related to multiple factors such as LiDAR point 
cloud density, tree canopy shape and overlap with adjacent tree can
opies. In our study, the LiDAR point clouds for 2011, 2014 and 2017 are 
constrained with both different point densities and incomplete point 
classification with respect to vegetation. Classification of vegetation is 
only present in the 2011 LiDAR dataset, and the point density differs 
both between, and spatially within, the three datasets (see Table 1). 
Jakubowski et al. (2013) suggested that an average point density of 2 
points per m2 is enough for detection of large individual trees (>15 m). 
Others, like Zhang et al. (2015), claim that segmentation of individual 
trees and extraction of tree parameters (such as tree height, base height, 
canopy diameter) rely on at least 9 points per m2 for large trees, and 
even higher point densities for smaller trees. The average point density 
of the LiDAR datasets in our study range from 43 (2011), 25 (2014) and 
10 (2017) points per m2, whereas the minimum point density range from 
5 in 2011 to 10 in 2014 (for 2017 the minimum point density is not 
reported). 1 Pers. com. M. Wells, Oslo Urban Environmental Agency. 
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Ciesielski and Sterenczak (2019) found that the use of single algo
rithms and single point clouds may introduce under- and over- 
segmentation due to the urban tree canopy‘s mixed stand, variation in 
shape and size, single tree growth, different light conditions and human 
activities modifying the tree shapes. For our study, we applied a stan
dard watershed segmentation method combined with a Local-Maxima 
filtering of the CHM. This segmentation approach is frequently used 
and often favored for its efficacy (Zhang et al., 2015), but known to have 
several limitations. The interpolation and spatial resolution of the CHM 
may introduce several errors and uncertainties (Smith et al., 2004), 

Table 4 
Combined extent-condition accounting table for 2D tree canopy area in the Small House plan area (policy focus).  

Tree height band 3–5 m 5–10 m 10–15 m 15–20 m 20–25 m 25–30 m 30–35 m 35–40 m 3–40 m 

Change 2011–2017 (%)  146.11  77.21  9.05 − 11.05 –23.69 − 63.90 − 74.64 − 67.46 − 1.04 
Total 2011 (daa)  55.09  955.15  1500.77 2034.09 1539.62 547.02 101.53 13.89 6747.16 
Additions (daa)  74.21  809.81  155.67 0.00 0.00 0.00 0.00 0.00 283.59 
Losses(daa)  0.00  0.00  0.00 − 14.49 − 314.03 − 341.21 − 75.78 − 10.6 0.00 
Total 2014 (daa)  129.3  1764.96  1656.45 2019.6 1225.59 205.81 25.75 3.29 7030.75 
Additions (daa)  6.28  0.00  0.00 0.00 0.00 0.00 0.00 1.23 0.00 
Losses (daa)  0.00  − 72.3  − 19.84 − 210.19 − 50.72 − 8.33 0.00 0.00 − 353.89 
Total 2017 (daa)  135.58  1692.65  1636.6 1809.41 1174.87 197.48 25.75 4.52 6676.86  

Table 5 
Combined extent-condition accounting table for tree canopy volume in the Small House plan area (policy focus).  

Tree height band 3–5 m 5–10 m 10–15 m 15–20 m 20–25 m 25–30 m 30–35 m 35–40 m 3–40 m 

Change 2011–2017 (%)  130.71  68.83  13.43  2.12 − 5.80 − 43.19 − 56.49 − 25.32 − 2.13 
Total 2011 (Mill. m3)  0.15  5.36  14.51  28.35 27.78 11.91 2.69 0.42 91.16 
Additions (Mill. m3)  0.17  4.24  2.40  3.11 0.00 0.00 0.00 0.00 1.45 
Losses (Mill. m3)  0.00  0.00  0.00  0.00 − 1.74 − 5.06 − 1.47 − 0.20 0.00 
Total 2014 (Mill. m3)  0.32  9.60  16.91  31.46 26.04 6.85 1.22 0.21 92.61 
Additions (Mill. m3)  0.02  0.00  0.00  0.00 0.13 0.00 0.00 0.98 0.00 
Losses (Mill. m3)  0.00  − 0.55  − 0.45  − 2.51 0.00 − 0.09 − 0.05 0.00 − 3.39 
Total 2017 (Mill. m3)  0.34  9.05  16.46  28.95 26.17 6.77 1.17 0.31 89.22  

Fig. 7. Tree canopy obtained by tree canopy segmentation was plotted against tree canopy area from the reference datasets with the 1:1 line of fit. The LiDAR model 
from 2017 (B) was a better fit than that of 2014 (A). 

Table 6 
Comparison of LiDAR tree canopy segmentation results with reference datasets.   

RMSE 
(ha) 

Relative RMSE 
(%) 

Mean difference 
(ha) 

Relative 
difference (%) 

LiDAR 
2014  

0.04  19.98 − 0.06 –32.61 

LiDAR 
2017  

0.0005  0.25 − 0.03 − 16.38  
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which may affect the subsequent tree canopy segmentation process 
(Suárez et al., 2005). Also, the smoothing of the CHM may lead to under- 
or overestimates of the tree height (Tiede et al., 2005). 

Barnes et al. (2017) found that a spatial resolution of 0.15 m pro
vided a successful delineation of small larch canopies (canopy height <
20 m). For large larch canopies (canopy height > 30 m) they found that a 
spatial resolution of 0.5 m gave the most successful delineation. In our 
study, a spatial resolution of 0.5 m was considered the smallest opera
tional pixel size allowed for in our ArcGIS desktop computing 
environment. 

Many studies have implemented image smoothing techniques such 
as Gaussian filtering to cope with height anomalies and associated error 
sources introduced as a part of the acquisition and processing of LiDAR 
data (Barnes et al., 2017). The use of pit-filling algorithms and the 
application of pit-free CHM generation methodologies have been 
introduced in more recent studies (Stange et al., 2020; Barnes et al., 
2017). Last, but not least, the size of the Local Maxima filter has a sig
nificant influence on the smoothed CHM. Chen et al. (2006) recommend 
using a filter size no larger than the smallest tree canopy within the 
study area. Barnes et al. (2017) suggests different Local Maxima filter 
sizes (in diameter) for different tree heights: Trees <= 15 m (1 m); trees 
15–30 m (2 m) and trees >= 30 m (3 m). As the main focus in our study 
has been medium to large tree canopies in the Small House plan area, we 
decided to smooth our CHMs with a Local Maxima filter size of 3 m in 
diameter (equal to 6 pixels at a spatial resolution of 0.5 m). The Local 
Maxima filter size, the applied CHM pixel size and the inherent local 
variation in point density may explain the underestimation in number of 
smaller tree canopies and overestimation in number of larger tree can
opies in our segmentation results. Another reason for underestimating 
small trees may be the effect of a lower detection and delineation ac
curacy of smaller trees within or under dense overlapping canopies, than 
for open areas (Matasci et al., 2018). 

4.2.3. Challenges with single tree canopy segmentation in an urban 
environment 

As pointed out by Tanhuanpää et al. (2014), single tree detection in 
an urban environment is affected by man-made vertical structures that 
may confound the segmentation algorithms in the separation of true and 
false tree canopies. To cope with this challenge, we applied TGI vege
tation masks from RGB values in the 2011 and 2014 LiDAR point clouds 
to extract potential true tree canopies within vegetated pixels of the 
CHM. Due to the lack of RGB-information in the 2017 LiDAR point 
cloud, we unfortunately had to use the 2014 vegetation mask as a proxy- 
mask for the 2017 CHM. To exclude potential remaining false trees in 
the vegetated pixels (such as building roofs, towers, traffic signs, traffic- 
lights, poles, power lines, etc.) we used a detailed infrastructure and 
building map from 2011. Unfortunately, we did not have access to 
similar maps from 2014 and 2017. Since the construction rate in the 
built-up area of Oslo has been rather high in this period, and due to the 
above mentioned temporal masking incoherence, it is probable that 
some buildings and infrastructure constructed after 2011 may have been 
mistakenly segmented as tree canopies and contributed accordingly to 
the overestimation of tree canopy. 

4.3. Detecting tree canopy change with LiDAR data designed for 
municipal planning 

A comparison of Figs. S1, S2 and S3 (in the supplementary section of 
this paper) shows that the aggregation of changes at city district level 
hides local variation in tree canopy cover and condition (height) which 
could be relevant for policy and planning. For example, a policy to make 
tree canopy more equitably distributed across residential areas would 
need spatial targeting at neighbourhood (census tract level) or below. 
Furthermore, monitoring of tree canopy change in special management 
areas, such as the Small House plan area requires bespoke reporting on 
the management area rather than at administrative level. For spatial 

planning purposes, it could also be very useful to monitor tree canopy 
change within the core units of zonal planning as described in § 11-7 in 
the Norwegian Spatial Planning Act (Ot.prp nr. 32, 2007–2008). An 
important aspect to declare in this context is whether tree canopy seg
mentation based on general purpose LiDAR data is sufficiently accurate 
for these purposes. 

With LiDAR data combining canopy height and area we can identify 
a significant loss of tall trees in the Small House plan area. Modeling of 
tree canopy volume indicates a net reduction in volume for the Small 
House plan area of − 2.13% 2011–2017 (see Table 5), indicating that the 
loss of large trees > 20 m, may not have been compensated by planting 
in terms of regulating ecosystem services linked to canopy volume / leaf 
area. The loss of large tree canopy is likely to have an even larger effect 
on greenviews. This is also the intention of the Planning and Building 
Agency’s restrictions on felling trees > 90 cm circumference at breast 
height. The structural data provided by LiDAR is thus important for 
urban ecosystem condition accounts (height and volume based on 
segmented area). 

Spatial mapping of net change at neighbourhood level (as shown in 
Fig. S4 in the Supplementary material section) can be a useful tool for 
prioritizing monitoring, targeted communication with owners and 
plantings on public land to compensate for loss of private trees that are 
publicly visible. The LiDAR-based tree canopy segmentation products 
may also be useful for targeting Oslo’s wider “100 000 trees by 2030” 
campaign to local deficit areas that are uncovered by change mapping at 
250 m2 pixel level. However, at this resolution the use of Sentinel-2 
landcover mapping with canopy classification would be a lower cost 
alternative of better accuracy. 

Otto von Bismarck once said that it is preferable, for laws as for 
sausages, not to know how they are made. Similarly, there is relatively 
little research on how the quality of inputs and assumptions that go into 
ecosystem extent and condition mapping affect the usefulness for 
decision-support purposes (Hou et al., 2013; Schulp and Landuyt, 2017). 
Fig. 8 summarizes how accurate our segmentation results are relative to 
different purposes in municipal planning. For city-wide, district and area 
planning estimates of aggregate tree canopy area, and total ecosystem 
service estimates using i-Tree Eco, we think the LiDAR-based tree can
opy segmentation is accurate enough for the purpose of raising aware
ness. With the varying LiDAR raw data quality, we do not find it accurate 
enough for change detection within a common 4-year accounting 
period. Tree canopy maps zoomed to neighbourhood level also provide 
the awareness raising that tree canopy is of similar importance for 
landscape structure as buildings in many places. At the level of public 
parks and streets, the LiDAR tree canopy segmentation may be useful as 
a ‘first-cut’ inventory of trees to be verified by ground-truthing. At the 
property level for the computation of tree cover in condition indices, the 
segmentation may not be accurate enough. At individual tree level, the 
LiDAR tree canopy segmentation data do not provide enough informa
tion to compute tree compensation values (Randrup, 2005), and site 
inspection is necessary. 

To improve accuracy and broaden the usefulness of the approach, we 
recommend designing a more coordinated, coherent and regularly 
scheduled data acquisition program both for field data sampling, LiDAR 
campaigns and simultaneous acquisition of high-resolution orthophoto- 
imagery. From a cost-effectiveness perspective, LiDAR could be priori
tized for built-up areas with tree canopy densities <20%. The LiDAR 
campaigns in these areas should provide vegetation classified point 
clouds and adequate point densities for segmentation of both small and 
large tree canopies according to Zhang et al. (2015). Areas with >20% 
tree canopy density can be covered with satellite remote sensing (such as 
e.g. Sentinel-2) which offers equal or better accuracy and is free of 
charge. From a methodological perspective we recommend applying a 
CHM smoothing algorithm that is adapted to local tree size and 
morphology classes. From a computational perspective, based on our 
experiences from tree canopy segmentation in a desktop GIS- 
environment, we recommend doing the segmentation in a cloud-based 

F. Hanssen et al.                                                                                                                                                                                                                                



Ecological Indicators 130 (2021) 108007

10

platform such as for example Google Earth Engine. Stange et al. (2020) 
successfully implemented an alternative to the watershed segmentation 
technique in Google Earth Engine, but were also unable to account for 
varying canopy sizes over the study area. 

5. Conclusions 

This study estimates that the built-up area of Oslo from 2011 to 2017 
had an increase in the number of tall trees (above 15 m), a moderate 
increase in the number of small trees (below 15 m) and a relatively 
constant number of trees between 6 and 10 m. In the same period the 
Small House plan area had a large increase in number of small trees 
(below 10 m) and a decrease in tall trees (above 10 m). The built-up area 
had a 17.15% increase in the tree canopy area and a 21.35% increase in 
the tree canopy volume, whereas the Small House plan area had a 1.04% 
reduction in the tree canopy area and a 2.13% reduction in the tree 
canopy volume. 

A successful validation of the results require access to concurrent and 
representative field data. Restricted to a sparse amount of field data (29 
928 observed trees), we found that our results from 2014 have a low to 
medium accuracy performance (detection rate of 63%). Validating the 
results with reference datasets from 93 random plots (registered in 
2015) indicated that the LiDAR-based tree canopy segmentation results 
overestimate the tree canopy area. 

This study demonstrates the potential and limitations of utilizing 
general purpose LiDAR data to provide ecosystem condition data to 
complement landcover data in urban ecosystem extent-condition ac
counts. We outline how LiDAR-based tree canopy segmentation can 
provide replicable and complementary information useful to provide 
estimates of urban tree canopy height, area and volume which are 
necessary for ecosystem service modeling and valuation. 

For future municipal ecosystem service accounting, we recommend a 
coordinated, coherent and regularly scheduled data acquisition program 
both for field data sampling and LiDAR. Municipal LiDAR campaigns in 
Norway should aim to identify tree canopy as part of the general urban 
structural inventorying. This will determine how the raw data are pro
cessed and classified. We recommend differential use of LiDAR and 
satellite remote sensing data. LiDAR campaigns should be prioritized for 

built-up areas with tree canopy density <20%. The LiDAR-campaigns 
should provide adequate point densities and vegetation classification 
for segmentation of both small, medium and large tree canopies. Areas 
with >20% tree canopy density can be covered with satellite remote 
sensing (e.g. Sentinel-2) which offers equal or better accuracy and is free 
of charge. We further recommend applying a CHM smoothing algorithm 
that is adapted to local tree size and morphology classes, and to do the 
segmentation in a cloud-based platform such as e.g. Google Engine. 

CRediT authorship contribution statement 

Frank Hanssen: Conceptualization, Methodology, Software, Formal 
analysis, Investigation, Data curation, Writing – original draft, Writing - 
review & editing, Visualization. David N. Barton: Conceptualization, 
Validation, Investigation, Writing – original draft, Writing - review & 
editing, Supervision, Project administration, Funding acquisition. 
Zander S. Venter: Validation, Formal analysis, Investigation, Writing - 
review & editing, Visualization. Megan S. Nowell: Validation, Formal 
analysis, Investigation, Writing - review & editing, Visualization. Zofie 
Cimburova: Validation, Formal analysis, Investigation, Writing - review 
& editing, Visualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research was funded through the URBAN EEA project, Research 
Council of Norway grant 255156/RI (DNB, FH, ZV, MN, ZC) and the 
2015–2016 BiodivERsA COFUND call for research proposals, with the 
national funder the Research Council of Norway (DNB, FH). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 

Fig. 8. Purposes of urban tree canopy accounting. Photo: Andrew Dunn (CC BY-SA 2.0).  
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