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• Machine learning workflow using three
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Estimation andmonitoring of soil organic carbon (SOC) stocks is important for maintaining soil productivity and
meeting climate changemitigation targets. Current global SOCmaps do not provide enough detail for landscape-
scale decision making, and do not allow for tracking carbon sequestration or loss over time. Using an optical
satellite-driven machine learning workflow, we mapped SOC stocks (topsoil; 0 to 30 cm) under natural vegeta-
tion (86% of land area) over South Africa at 30 m spatial resolution between 1984 and 2019. We estimate a total
topsoil SOC stock of 5.6 Pg C with a median SOC density of 6 kg C m−2 (IQR: interquartile range 2.9 kg C m−2).
Over 35 years, predicted SOC underwent a net increase of 0.3% (relative to long-term mean) with the greatest
net increases (1.7%) and decreases (−0.6%) occurring in the Grassland and Nama Karoo biomes, respectively.
At the landscape scale, SOC changes of up to 25% were evident in some locations, as evidenced from fence-line
contrasts, and were likely due to local management effects (e.g. woody encroachment associated with increased
SOC and overgrazing associated with decreased SOC). Our SOC mapping approach exhibited lower uncertainty
(R2 = 0.64; RMSE = 2.5 kg C m−2) and less bias compared to previous low-resolution (250–1000 m) national
SOC mapping efforts (average R2 = 0.24; RMSE= 3.7 kg C m−2). Our trend map remains an estimate, pending
repeated measures of soil samples in the same location (time-series); a global priority for tracking SOC changes.
While high resolution SOCmaps can inform landmanagement decisions aimed at climatemitigation (natural cli-
mate solutions), potential increases in SOC are likely limited by local climate and soils. It is also important that
climate mitigation efforts such as planting trees balance trade-offs between carbon, biodiversity and overall eco-
system function.
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1. Introduction

Soil organic carbon (SOC) content is one of themost important prop-
erties of soil in determining the characteristics of vegetation that can
grow on that soil. In turn, the vegetation characteristics are strong de-
terminants of the amount and vertical distribution (Jobbágy and
Jackson, 2000) and forms of SOC in the soil (Baily et al., 2019). Anthro-
pogenic interference in this feedback throughmodification of the vege-
tation characteristics (e.g. clearing natural vegetation) and also by
manipulation of the soil (e.g. ploughing, fertilizing) has resulted in
large-scale changes to SOC globally. For example, land use change
resulting from cropping and grazing over the last 12,000 years has led
to an estimated 116 Pg C loss in the top 2 m of soil withmost of this oc-
curring in grasslands, savannas and croplands (22, 22, 21 Pg C respec-
tively; Sanderman et al., 2017). Sanderman et al. (2017) estimate that
while some areas gained soil C from cropping, the median loss globally
is 26%. SOC is also of global importance because the size of the SOC pool
(1500 Pg C) is ca. three-fold that of above-ground vegetation (450 Pg C;
Friedlingstein et al., 2020). Since anthropogenic manipulation can
change the SOC pool dramatically, the large SOC pool has been the
focus of decades of discussion and many initiatives (e.g. Lal, 2004) to
explore and enhance its potential to sequester atmospheric CO2. Despite
this focus, 87% of global carbon stocks are actually oceanic (ca. 38,000 Pg
C,mostly inorganic)with 11% being terrestrial (4655 Pg C) and 2% in the
atmosphere (860 Pg C) (Friedlingstein et al., 2019; Le Quéré et al., 2018).
Furthermore terrestrial coal, gas, oil (5000–10,000 Pg C; Houghton,
2007) as well as permafrost (Friedlingstein et al., 2020) make up two-
thirds of land C stocks. It is therefore not the dominant size of the SOC
pool (despite frequent claims to the contrary), that has resulted in the
focus of attention on its capacity to sequester C, but the fact that manip-
ulation of the SOC pool is perceived as being feasible.

Manipulation of SOC is seen as part of natural climate solutions or ef-
forts to increase carbon storage by restoration, conservation or im-
proved management of native and agricultural systems so that global
warming is stabilized below the 2 °C level (Goldstein et al., 2020;
Griscom et al., 2017). Some initiatives to sequester C have been
criticised for inaccurate estimates and predictions of SOC among other
challenges (Rumpel et al., 2020). Thus in order to understand the poten-
tial of soil to support vegetation and also to sequester C, quantification
of the potential SOC is required. This may be achieved by examining
the SOC in sites that have been only indirectly impacted by humans
and understanding its drivers. Apart from the direct importance of
SOC, it is also a useful proxy for measure of soil health (Mills and Fey,
2004) because it tends to correlate positively with soil properties such
as infiltrability, aggregate stability, erodibility, water-holding capacity,
nutrient-holding capacity, microbial biomass, soil respiration and avail-
ability of plant nutrients. Thus accurate assessments of SOC and theway
in which it is changing are vital.

The amount of SOC is strongly determined by the input of C and lon-
gevity of C in the soil and consequently depends on thebalance between
net primary productivity and decomposition and other processes that
promote SOC loss/retention (e.g.fire and grazing). This balance is deter-
mined by climatic factors and elevation at global and regional scales,
while soil texture, mineralogy, and topography that vary at smaller
scales interact with climate to determine SOC locally (Houghton,
2007; Huang et al., 2018). For example, in the cold wet climates of
northern latitudes, primary productivity exceeds decomposition be-
cause photosynthetic rates are not limited by moisture, but microbial
mineralization is limited by cold, resulting in accumulation and high
SOC (Houghton, 2007). Generally, arid regions have low SOC due to
low primary production, while the tropics often have intermediate
SOC levels due to high rates of primary productivity compensating for
rapid decomposition. Temperate ecosystems may have seasonally high
primary productivity and seasonally low decomposition rates resulting
in an accumulation of SOC (Huang et al., 2018). Legacy climate is also a
major determinant of SOC. For example, an arid grassland may have
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relatively high SOC concentrations if it was previously forested
(Delgado-Baquerizo et al., 2017). Parentmaterial and soil characteristics
are particularly important determinants of SOC stabilization, which is
dependent on mineral association and aggregate formation (Kleber
et al., 2011) with the exception of pyrogenic and fossil C (Marschner
et al., 2008).

Climate change is likely to have important consequences for SOCdue
to alteration of the inputs from vegetation, decomposition related pro-
cesses and fire regimes. Because decomposition is a temperature- and
moisture-sensitive process (Knorr et al., 2005), elevated temperature
has the potential to increase the flux of CO2 from soils. For example,
models with constant inputs estimated 11–16% increased loss of SOC
in central Europe (Wiesmeier et al., 2016). Changes in vegetation due
to climate change and elevated CO2 are also likely to influence SOC
but due to the complex interactions between inputs and losses of SOC
it is difficult to predict what the net outcome will be (McGuire et al.,
1995; Zhou et al., 2019). Global climate induced increases in extreme
fire weather conditions resulting in a 22% increase in burned area
(Abatzoglou et al., 2019) also contribute to changes in SOC both directly
through formation of pyrogenic C and by influencing vegetation. While
these climate-linked changes are undeniably important over vast areas,
land use changes can yield even greater positive and negative effects on
SOC (Houghton, 2007; Zhou et al., 2019).

Globally, the levels of SOC are highest at high latitudes where low
temperature slows decomposition and where there is currently still a
net sink for CO2 (Houghton, 2007). This raises the question of whether
sequestration in temperate ecosystems, such as in South Africa (SA),
can be meaningful for global CO2 sequestration? The argument has
been made that despite relatively low SOC percentages, extensive
areas can contribute to a high potential for sequestration. South Africa
is thought to have lost 2 Pg C (going from 15.8 to 13.8 Pg C) since
10,000 BCE, largely due to grazing, the main land use (Griscom et al.,
2017). While global loss estimates due to cropping are larger per unit
area, total losses from grazing are more than cropping due to its spatial
extent, e.g. 33 vs. 31% losses (Sanderman et al., 2017). Grasslands of
southern Africa, Argentina and Australia are hotspots of SOC loss and
could be targeted for restoration efforts (Sanderman et al., 2017). De-
spite this, herbivory is a natural part of African ecosystems (Venter
et al., 2017). Fires are another important driver of plant biomass produc-
tion in African grassland and savanna ecosystems (Archibald et al.,
2005). While frequent fires decrease soil C and N concentrations
(−13%),moderate burning increases them (+19%C and+18%N) in sa-
vannas and grasslands (Pellegrini et al., 2018). Pyrogenic soil C (PyrC;
Jones et al., 2019) represents 14–60% of total soil organic C (Jones
et al., 2019; Reisser et al., 2016). PyrC or charcoal is resistant tomicrobial
degradation and stable on timescales relevant to anthropogenic climate
change and its potential mitigation, i.e. centuries to millennia (Jones
et al., 2019). In SA, the Grassland, Savanna and Fynbos biomes are all
fire-driven or -prone, unlike the Karoo, Thicket and Forest biomes
(Mucina et al., 2018). Fire is an important driver of nutrient cycling in
these fire-prone ecosystems and similar ones globally. Fire and herbiv-
ory are also important in maintaining productivity in native grasslands
by reducing woody plant encroachment, which, for example, has in-
creased by 8% in sub-Saharan Africa over the last three decades
(Venter et al., 2018).

With the advent of cloud-based computing and satellite remote
sensing, our ability to createwall-to-wallmaps of SOC has advanced sig-
nificantly in recent years (Xiao et al., 2019). The standard approach
adopted by the UNCCD includes assigning SOC densities to land cover/
use categories and then extrapolating over space using coarse-
resolution global land cover products (Mattina et al., 2018). Changes
in land cover are then used to infer national changes when reporting
on carbon trends to the UNCCD. More advanced geostatistical
approaches such as spatial or regression kriging rely heavily on soil sam-
pling data to interpolate SOC surfaces, often informed by a relationship
to basic edaphic variables like elevation (Lamichhane et al., 2019). Two
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such approaches have been used tomap soil carbon over SA at 1 km res-
olution (Department of Environmental Affairs, 2015) and aggregated to
terrain units (Schulze and Schütte, 2020). Onedisadvantage of these ap-
proaches is that, unless new soil samples are collected, they do not per-
mit monitoring of SOC change. Developments in the field of machine
learning and remote sensing have advanced soil mapping science
(Padarian et al., 2020; Stockmann et al., 2015) to the point where it is
possible to tentatively map SOC in space and time (Heuvelink et al.,
2020). Such advances have led to a proliferation of national-scale (e.g.
Brazil: Gomes et al., 2019; United States: Guevara et al., 2020;
Madagascar: Ramifehiarivo et al., 2017) and global-scale (Hengl et al.,
2017) soil carbonmaps. However, globalmaps of SOCmay be locally bi-
ased and inaccurate, particularly where the global model used to infer
SOC did not have access to national or provincial soil reference data
(Cramer et al., 2019a, 2019b). Further, national-scale maps in SA to
date have been limited in spatial resolution to 1 km. These limitations
preclude the ability to detect andmonitor SOCdynamics at spatial scales
that are relevant to land managers (e.g. conservationists and farmers).

Considering the importance of SOC in ecosystem functioning and ag-
riculture and initiatives to sequester C in SOC, it is important to know
what the potential SOC content of temperate systems is. This may pro-
vide a benchmark to target for restoration of SOC in transformed land-
scapes. Furthermore, understanding the likely SOC trajectories over
the country and at landscape scales will allow for further analysis of
the drivers of SOC change. Firstly, we aimed to build upon previous
SOC mapping efforts in SA to create a national long-term average SOC
map of greater accuracy and spatial resolution than its predecessors.
Secondly, we aim to advance themethodological state-of-the art in dig-
ital soil mapping by incorporating Landsat satellite imagery in a ma-
chine learning workflow to map decadal SOC changes at 30 m spatial
resolution and national extent. Comparison with other contemporary
(regional) models is also informative in identifying bottlenecks to the
modelling enterprise. Finally, using the trendmaps we test the hypoth-
esis that, given the recent encroachment of woody plant cover into sa-
vannas, changes in national fire regimes and global warming trends,
there has been a net sequestration of carbon in soils within natural
areas of SA. The accurate and high-resolution maps of mean SOC and
SOC trends presented here will inform future enquiry into the drivers
of SOC change as well as the potential of areas to increase SOC given
their inherent climate and edaphic limitations. This understanding will
help us access the potential to increase soil C storage while maintaining
ecosystems integrity.

2. Methods

2.1. Study area

South Africa (SA) comprises 9 biomes (Fig. 1; desert and coastal
biomes are not shown) where there is a distinct East-West aridity and
productivity gradient. The Succulent Karoo in the West is arid with a
low australwinter rainfall (ca. 100–200mm) and relatively lowproduc-
tivity and SOC soils while the Grassland and Savanna biomes in the East
receive rain in the austral summer (ca. 800 to >1500 mm) and include
relatively higher productivity and SOC (Department of Environmental
Affairs, 2015; Hijmans et al., 2005). Only 16% of SA is considered arable
and the dominant land use is livestock and wildlife farming on native
rangelands (79% of SA; Statistics South Africa, 2020), notably in the
Karoo biomes, Grassland and Savanna biomes. The Fynbos, Grassland
and Savanna biomes evolved with and are dependent on fire for nutri-
ent cycling (Mucina et al., 2018). Dominant soils are Arenosols (sandy
soils low in organic matter), Regosols (mineral soils) as well as more
fertile Luvisols and Cambisols as classified by the World Reference
Base for Soil Resources (IUSS Working Group WRB, 2015). High SOC
soils in SA largely overlap with Acrisols and Regosols (Agriculture
Organization of the United Nations. Land and Water Development
Division, 1993). Locally, the predominant soils are classified as lithic
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and oxidic (sandy or rocky low fertility soils) while soils that are
cumulic (e.g. of aeolian, colluvial and alluvial origins) are also wide-
spread but organic soils cover very little of the country soil (Fey, 2010;
Soil Classification Working Group, 1991). The high SOC Acrisols and
Regosols of theWRB roughly overlapwith ‘humic’ soils in the local clas-
sification and are concentrated in the relativelymoist eastern side of SA.
Generally, much of SA comprises old, climatically buffered infertile
landscapes (OCBILS; Hopper et al., 2016; Hopper and Lambers, 2009).
These OCBILS are globally associated with 12 of the 35 global biodiver-
sity hotspots, of which 3 occur in SA.

2.2. SOC sampling data

Survey data on soil profiles and topsoil coreswere collated from four
data sources. These included a national soil profile database from the
Agricultural Research Council of South Africa, a regional subset of the
global soils database collated by the International Soil Reference and In-
formation Centre (ISRIC), and two research-based private collections;
one maintained by Heidi Hawkins and the other by the Gamtoos Irriga-
tion Board and the Department of Environmental Affairs (GIB & DEA
Fig. 1). Soil samples were collected under different sampling designs
(summarised in Table S1). Soil organic carbon was analysed using the
Walkley-Black oxidation method (Walkley and Black, 1934) or dry oxi-
dation after removal of carbonates, where correlation between SOC
using these methods is high (r2 of 0.96; Dieckow et al., 2007). We
filtered the datasets for samples collected in natural areas after 1984
(before which no Landsat satellite data are available). Natural areas
were defined by the 20-m resolution 2018 South African National Land-
Cover dataset (Thompson, 2018) as any land cover other than water,
urban (artificial surfaces), mines or cultivated land (172,000 km2 or 14%
of the country). We chose to exclude these land use types because the
drivers of SOCdynamics are distinct from those in soils under natural veg-
etation. SOC in cultivated soils is influenced by tillage, crop rotation, crop
residue management, fertilization, fallow periods and irrigation. We did
not have the spatial data to act as proxies for these processes and antici-
pate that including agricultural land would over-estimate SOC on natural
land. The spatial and temporal filter left us with a total of 5834 soil sam-
ples (ARC: 5429, ISRIC: 41, Hawkins: 135, GIB & DEA: 229) distributed
over 35 years and spread over South Africa (Fig. S2).

We used only topsoil samples from all databases with a recorded
depth of between 0 and 20 or 30 cm. SOC stock values for each sample
were calculated using the following formula:

SOCstock kg C m−2� � ¼ SOCconcentration g kg−1
� �

� BD g cm−3� �

� 1−CRFð Þ � d cmð Þ

where BD is the bulk density of the soil, CRF the proportion of coarse
fragments, and d is the depth. Where BD and CRF were not reported in
the soil survey databases, we used the betaSoilGrids2019 data (de
Sousa et al., 2020) to infer values at given sampling locations. We ac-
knowledge that this inherits the uncertainty in the BD dataset, however
these aremostly lowwith onlywestern coastal and some Fynbosmoun-
tainous areas having medium uncertainty (soilsgrid.org). In addition,
we could not source a more reliable alternative.

2.3. Environmental covariates

Environmental covariates were collected asmodel inputs to help ex-
plain both the spatial and temporal variation in SOC over SA. All data
were processed within the Google Earth Engine cloud computing plat-
form for geospatial analysis (Gorelick et al., 2017). Covariates were col-
lected as proxies or indicators of climatic, biological and morphometric
determinants of SOC formation (Table 1) in line with soil mapping best
practice guidelines (Hengl and MacMillan, 2019). These included static
covariates (long-term averages that do not change over time) and

http://soilsgrid.org


Fig. 1.Distribution of soil sample locations over South Africa. Sample locations are colouredby the biome inwhich they occur and sizedbased on the observed SOC value. Inset graphs show
the distribution of samples over time and the distribution of SOC values per biome.
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dynamic covariates (covariates that change with time), which have
global coverage and thereby promote the transferability of these
methods.

The primary static covariates describing biological processes in-
cluded the long-term (1984–2019) mean of leaf area index (LAI) and
fraction of photosynthetically active radiation (FAPAR) derived from
the Advanced Very High Resolution Radiometer (AVHRR) satellite
provided by the National Oceanic and Atmospheric Administration
(Claverie and Vermote, 2014). We calculated average net primary pro-
ductivity and fire frequency at 500 m resolution between 2000 and
2019 using datasets (“MOD17A3HGF V6” and “MCD64A1”) derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS).
Alongwith fire, herbivory is also an important driver of biogeochemical
cycles (Venter et al., 2017) and therefore, we included gridded livestock
densities (Robinson et al., 2014) as a covariate.We also included data on
the frequency of bare surfaces (Demattê et al., 2020) and mean frac-
tional woody plant cover (Venter et al., 2018) based on methods using
the Landsat satellite archive. Static covariates describing morphometric
processes included terrain variables listed in Table 1 and derived from
the digital elevation model produced with the Shuttle Radar Topogra-
phy Mission (Farr and Kobrick, 2000). These data also included
ecologically-relevant indices describing landforms and physiographic
diversity of terrain including the topographic diversity and position in-
dices and the continuous heat-insolation load index (Theobald et al.,
2015). The final group of static variables characterizes climatic pro-
cesses and was derived from the WorldClim V1 Bioclim dataset
(Hijmans et al., 2005).

Dynamic covariates were derived from the spectral reflectance data
collected by the Landsat 5, 7 and 8 satellites at 30 m spatial resolution
between 1984 and 2019. The imagery provided in Google Earth Engine
has been orthorectified and atmospherically corrected to produce sur-
face reflectance products. We masked clouds, cloud shadow and snow
4

using the ‘pixel_qa’ band. Due to slight differences between sensors
aboard Landsat satellites (Holden and Woodcock, 2016), cross-
calibration of reflectance values is important when implementing time
series analysis (Zhu, 2017). We applied published cross-calibration co-
efficients to harmonise Landsat 8 reflectance values with the other
Landsat collections (Roy et al., 2016). Annual median composite images
were calculated for all bands including the normalized difference vege-
tation index (NDVI), which has been widely used as a proxy for vegeta-
tion productivity and cover (Pettorelli et al., 2005; Tucker, 1979) and is
therefore expected to correlate to SOC. We also calculated the 10th and
90th percentile NDVI composites for each year in an attempt to charac-
terize vegetation phenologies (e.g. annual grasses versus perennial
woody plants), which might be an important determinant of SOC
(Table 1). For each soil sample, we extracted the year-specific satellite
composite values for the 30× 30mpixel intersecting the soil sample lo-
cation. Therefore, the Landsat-derived covariates are dynamic data that
vary temporally with the date of soil sample collection.

2.4. SOC modelling

To map SOC over space and time, we used a machine learning
workflow leveraging the Random Forest (RF) regression tree model
(Breiman, 2001). RF is one of themost commonly usedmodels in digital
soil mapping (Khaledian and Miller, 2020; Padarian et al., 2020) due to
its ability to handle nonlinear interactions between covariates and
skewed response data like SOC. To avoid overfitting and aid model in-
terpretability, we eliminated unnecessary and collinear covariates
with a two-step process. First we performed recursive feature elimina-
tion (RFE) which is a process akin to backward regression (Guyon
et al., 2002). RFE produces a model with the maximum number of co-
variates and iteratively removes the weaker explanatory variables
until a specified number of covariates is reached. Secondly, we screened



Table 1
Environmental covariates used to model SOC over South Africa.

Type Process
category

Spatial
resolution (m)

Variable

Static Biological 5000 FAPAR mean
FAPAR standard deviation
LAI mean
LAI standard deviation

500 Fire frequency
Livestock density
Net primary productivity

30 Bare surface frequency
Fractional woody cover

Morphometric Elevation
Terrain aspect
Terrain slope
Topographic diversity index
Topographic position index
Continuous heat insolation load index

Climatic 1000 Mean annual precipitation
Mean annual temperature
Precipitation coldest quarter
Precipitation driest month
Precipitation driest quarter
Precipitation seasonality
Precipitation warmest month
Precipitation warmest quarter
Precipitation wettest quarter
Temperature annual range
Temperature coldest quarter
Temperature diurnal range
Temperature driest quarter
Temperature seasonality
Temperature warmest quarter
Temperature wettest quarter

Dynamic Biological 30 Blue band reflectance
Green band reflectance
Red band reflectance
Near infrared band reflectance
Short-wave infrared reflectance 1
Short-wave infrared reflectance 2
NDVI 10th percentile
NDVI 50th percentile
NDVI 90th percentile

Abbreviations: FAPAR - fraction of photosynthetically active radiation; LAI - leaf area
index; NDVI - normalized difference vegetation index.
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formulticollinearity in the covariate set by calculating variance inflation
factor (VIF) values for each covariate and only including thosewith a VIF
of less than 5 (Zuur et al., 2010). The excluded collinear variables are
listed in supplementary Fig. S2. The RF models were run with
hyperparameters ntree set to 500 and mtry set to the square root of
the number of covariates.

To evaluate the uncertainty associated with the RF predictions,
we used external validation by withholding 30% of the dataset from
the model training stage and thereafter tested model predictions
against it. According to best practice (Piñeiro et al., 2008), we
regressed observed SOC on predicted SOC to derive the root mean
Table 2
Summary statistics on long-term soil organic carbon (SOC) stocks, density and change per bio

Biome Area natural land (km2) SOC stock (Pg C) SOC

Forest 6775 0.07 9.9 [6
Fynbos 63,944 0.4 6.0 [2
Grassland 269,920 2.02 7.1 [3
Nama Karoo 314,638 0.73 2.3 [1
Savanna 404,757 1.9 4.8 [1
Succulent Karoo 86,230 0.2 2.4 [1
Thicket 38,306 0.27 7.0 [2
Total: 1,184,571 5.59 5.6

5

square error (RMSE), mean absolute error (MAE) and adjusted R2

as measures of model accuracy and fit (Willmott, 1981). We
repeated this process 100 times in a bootstrapping procedure with
different randomly selected training and testing sets each time. The
mean of the resulting RMSE and R2 values were then calculated as
well as the mean error per soil sampling location to give an
indication of how model error varies over space. The RF algorithm
also measures the relative importance of each covariate by
quantifying the increase in prediction errors when a predictor is
permuted in the validation data. These importance scores were
averaged per covariate in order to understand what is driving the
model predictions.

2.5. SOC trend calculation

The trained RF model was then used to make wall-to-wall predic-
tions of SOC at 30 m resolution over SA for each year between 1984
and 2019. We were able to do this because the model was trained
on satellite data synced to the year of soil sample collection for
each soil survey site. We used the annual Landsat composites to pre-
dict annual SOC values for each pixel. Long-term average SOC was
calculated as the mean value across all annual predictions. The mag-
nitude of the trend in SOC was calculated for each 30 × 30 m pixel
using the Sen's slope (Sen, 1968) estimator across all annual SOC
prediction maps. The Sen's slope differs from simple linear regres-
sion in that it is a non-parametric regression that is robust against
outliers and skewed data (Wilcox, 2010). The relativized change in
SOC was calculated as:

ΔSOC %ð Þ ¼ m� SOCmean � 100

where m is the Sen's slope and SOCmean is the long-term mean for the
pixel in question. Due to a lack of repeatedmeasures SOC sampling data
(i.e. SOC samples repeated at the same location over time), we could not
validate our SOC change predictions.

2.6. Comparison with other SOC products

To compare our SOC predictions with previous mapping efforts,
we extracted SOC values for all sampling locations from the
betaSoilGrids2019 dataset (Hengl et al., 2017; SoilGrids, 2019) at
250 m resolution, the African iSDA soils dataset at 30 m resolution
(currently under review; Hengl et al., 2020), the SA national terres-
trial carbon sinks assessment (Department of Environmental
Affairs, 2015) at 1000 m resolution, and a recently produced na-
tional terrain-unit based SOC map (Schulze and Schütte, 2020)
rasterized at 100 m resolution. The Schulze and Schütte (2020)
dataset reports percentage soil organic carbon and was converted
to SOC with bulk density and coarse fragments from SoilGrids. As
with our RF uncertainty assessment, we regressed predicted SOC
on observed SOC and calculated RMSE, MAE and R2 for each data
product.
me in South Africa. Values in square parentheses are 5th and 95 percentile values.

density (kg C m−2) Net SOC change (%) Net SOC change (kg C m−2)

; 13] 0.8 [−2.6; 5.7] 0.08
.4; 9] 0.5 [−5.1; 7.3] 0.03
; 12] 1.7 [−3.9; 8.7] 0.12
; 4.3] −0.6 [−7.5; 6.2] −0.01
.6; 10] −0.3 [−10; 9.2] −0.01
.4; 4.6] −0.4 [−5.7; 4.8] −0.01
.5; 11.9] 0.7 [−4.7; 7] 0.05

0.3 0.02



Fig. 2. Predicted long-term average SOC (A) and changes (B) between 1984 and 2019. Change is expressed as a percentage of the long-term average for each pixel. Inset plots in A and B
show the density distribution of data values for each biome.White circles and text on themap in A indicate total SOC amounts within each biome in petagrams (1012 kg). Black text on the
map in B indicates biome average changes in percent.
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3. Results

3.1. SOC spatio-temporal predictions

Weestimate a total topsoil SOC stock of 5.6 Pg C in natural areaswith
a median SOC density of 6 kg C m−2 (IQR: interquartile range
2.8 kg C m−2) or 60 t ha−1 (Table 2; Fig. 2). The regional distribution
of SOC tends to follow the East-West aridity gradient, with greatest
stocks in the mesic Grassland and Savanna biomes, and smallest stocks
in the Karoo biomes in theWest (Table 2). The Grassland biome has the
second highest SOC density and therefore, although it covers half the
area of the Savanna, it amounts to a greater fraction of the national
SOC stock. In contrast, the forest biome contains the highest average
SOC densities, yet due to its limited distribution accounts for the
smallest fraction of the national SOC stock.

Over 35 years, SOC underwent a net increase of 0.3% (relative to long-
term mean) with the greatest net increases (1.7%) and decreases
(−0.6%) occurring in theGrassland andNamaKaroo biomes, respectively
(Table 2). SOC trends were very heterogeneous over space, with areas of
large SOC loss and sequestrationwithin close proximity (Fig. 2). Although
the net changes reported at the biome level (Table 2) were relatively
small, large trends (sequestration and loss of up to 25% of long-term
mean) were evident at provincial and landscape scales. These heteroge-
neities reveal fence-line contrasts in SOC dynamics, presumably driven
by grazing, browsing or frequent burning (Fig. 3A and B), and
woody plant clearing/harvesting (Fig. 3C and D).

3.2. Model performance and uncertainty

The annual standard deviation in LAI was the most important vari-
able in the RF model, followed by mean annual precipitation and eleva-
tion above sea level (Fig. 4). These highlight the importance of climatic
and morphometric constraints on regional variation in SOC. We found
four dynamic (satellite-derived) variableswithin the 15most important
covariates explaining the spatio-temporal variance in SOC (Fig. 4).
Among these, two measures of vegetation greenness (NDVI 90th and
Fig. 3. Landscape-scale predictions of SOC change between 1984 and 2019 for four selected loc
Savanna biome inA, grazing contrasts in the Thicket biomes in B, and examples of presumedwo
resolution satellite imagery are shown for reference and were not used in the SOC model. Ima
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10th percentile) were present, highlighting the importance of vegeta-
tion cover as a proxy for SOC.

Our final RF model produced a mean absolute error of 1.6 kg C m−2

(Figs. 5 and 6A). Model uncertainty was not evenly distributed over
space, with the highest median accuracies within the Grassland and
Savanna biomes (Fig. 5). The model tended to under-predict SOC in
arid biomes such as the Succulent Karoo and over-predict in mesic
biomes such as the Forest (Fig. 5).

3.3. External comparison

Our SOC mapping approach exhibited lower uncertainty compared
to previous national-scale (Fig. 6B and C) and international SOC maps
(Fig. 6D). In comparison to the other SOC maps in concert, our map
had lower error (RMSE = 2.5 vs 3.6 kg C m−2), greater model fit
(R2 = 0.64 vs 0.27), and less bias. The SoilGrids dataset displayed
large negative biases above approx. 5 kg C m−2. In contrast, the two
national-scale products exhibited positive biases, over-estimating SOC
across the whole range of observed SOC values (Fig. 6B and C). The
newly-released iSDA dataset performed better than the other data
products, however, it was less accurate relative to our map and
underestimated SOC (Figs. 6E and 7E). Apart frommodelling accuracies,
the advantages of higher spatial resolution are clear when comparing
different SOC map products at landscape scales (Fig. 7). The lower spa-
tial resolution (250–1000 m) of previous mapping products obscure
landscape variations in SOC that are clearly visible at 30-m resolution.

4. Discussion

The SOC map presented here is at higher resolution, lower uncer-
tainty and exhibits less bias compared to previous lower-resolution
(250–1000 m) national SOC mapping efforts. The level of uncertainty
associated with our SOC map (RMSE = 2.5 kg C m−2) is comparable
to that of other national-scale studies in Argentina (RMSE =
2.04 kg C m−2; Heuvelink et al., 2020) and Madagascar (RMSE =
2.6 kg C m−2; Ramifehiarivo et al., 2017). The 30-m resolution allows
ations in South Africa. Examples of wildlife-livestock fence-line contrasts are shown in the
ody plant clearing activity in the Savanna-Thicket ecotone are shown in C andD. Very high-
ge sources: Google, DigitalGlobe.
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Fig. 4. Variable importance for the final set of covariates used in the Random Forest model
to predict SOC over South Africa. Importance is measured as the percentage increase in
error if the covariate in question is removed from the model. Dynamic covariates are sat-
ellite-derived variables used to monitor changes over time.
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for characterization of areas not only at the landscape but also the
patch- and farm camp-scale. Apart from the larger number of sample
points, the higher resolution satellite data used in ourmapping is an im-
portant component of the accuracy. Since soils can vary substantially
over 10's of metres, using low resolution satellite data (e.g. 1 km) as a
correlate with soil characteristics limits the ability of the modelling al-
gorithm to reproduce the variability in soil properties.
Fig. 5. Spatial distribution of Random Forest model prediction error defined as the residuals from
distribution of prediction errors per biome.
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Although the SOC temporal changemap is based on spatial variation
in correlates of SOC, this trendmap is perhaps the most interesting and
useful aspect of this work since it stimulates further enquiry about
drivers of change, while providing land users with a focus for interven-
tions to reverse changes where appropriate, e.g. SOC loss on eroded
areas. Themean SOCmap indicates important spatial patterns and con-
trasts at the biome level, suggesting that simple accountingmethods for
SOC change (e.g., Intergovernmental Panel on Climate Change default
emission factors; Eggleston et al., 2006) will misrepresent SOC change
in many regions of SA. While biome-scale SOC changes were less than
2%, large SOC trends (sequestration and loss of up to 25% of long-term
mean) were evident in some locations, e.g., along fence-lines, that
would not be visible at lower resolutions. These landscape and smaller
scale differences allow local land use management effects (e.g. animal
stocking types and rates, fire regimes) and habitat loss (e.g. woody en-
croachment from invasive and local plants, erosion) to be visible,
questioned and potentially modified. Overall, the regional losses in
SOC over the last decades have been relatively small, partially due to
the offset resulting from the encroachment of grasslands by woody
species.

Comparison between the upper limits of SOC concentrations (Fig. 2)
of various biomes is informative about the potential of the individual bi-
omes to sequester carbon. For example, both the Succulent and Nama
Karoo regions had relatively low means and upper limits to SOC values
compared to the other biomes. These low values are associatedwith the
relative aridity of those systems and indicate that the potential of those
systems to sequester C is at best moderate. By contrast, forests have rel-
atively high potential for sequestration, although the spatial extent of
forest in SA is rather limited. While it might be naively argued that
this requires planting of forests to sequester C in regions that are not for-
ested (e.g. Bonn Challenge, https://afr100.org), the vegetation map of
SA indicates the previous extent of vegetation units, independent of
the linear regression of predicted on observed SOC values. Inset graph shows the density

https://afr100.org
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their current state of transformation. The reason that forests are re-
stricted in extent is because climatic, edaphic or disturbance limitations
constrain the extent of closed canopy vegetation. In many cases closed
canopy forests occur adjacent to open canopy vegetation across sharp
boundaries (tens of metres), indicating edaphic constraints and not an-
thropogenicmodification. A common reason for these sharp boundaries
is the difference in fire behaviour in the landscape due to slope breaks,
rock scree, drainage lines or wind shadows that results in some areas
being more susceptible to fire (Power et al., 2017). Over centuries,
these fire patterns have resulted in strong contrasts in soil properties
so that currently soil on which neighbouring open canopy vegetation
occurs is incapable of supporting closed canopy forest, despite in some
cases being derived from the same geology (Cramer et al., 2019a,
2019b). This is in contrast to the incorrect belief that where the climate
can potentially support trees, open canopy vegetation represents de-
graded ecosystems (Bond et al., 2019).

Over the past decade therehas been considerable interest in the use of
the succulent Portulacaria afra (Spekboom),which is an indigenous facul-
tative CAM-photosynthetic plant in SA, to sequester carbon (Mills et al.,
2015). This has been based on reported increases in SOC in plantations
of Spekboom (Mills and Cowling, 2006). Spekboom-dominated thicket
has been used for livestock, especially goat, pastoralism and large areas
have been degraded (Lloyd et al., 2002) due to differences in browsing
between goats and the indigenous browsers (Lechmere-Oertel et al.,
2005; Sigwela et al., 2009). While restoration of prior vegetation should
be lauded, attempts to transform other existing vegetation into forest
(Bond et al., 2019) or Spekboom-dominated vegetation, motivated by
the global carbon market (Mills and Cowling, 2014), are ecologically
damaging and prone to failure due to ecological limitations. While
some sites may have experienced considerable SOC loss and have great
potential for restoration and sequestration, we suggest that in general
the potential for sequestration within a biome is relatively fixed by the
limits imposed by the biome. Those natural limits are unlikely to change
unless the ecosystems are transformed by CO2- or nutrient-fertilization
(e.g. pollution) or management of disturbances such as fire and herbiv-
ory. For example, the naturally oligotrophic nature of Fynbos soils has re-
sulted in the vegetation remaining relatively more intact than that of the
Renosterveld because Fynbos soils are generally unsuitable for agricul-
ture (Newton and Knight, 2005). However, woody plant encroachment
may well represent an example of disturbance that can change SOC.

As part of the trend mapping, we tested the hypothesis that there
has been a net sequestration of C across SA givenwoody plant encroach-
ment trends, declines in burned area and climate warming (Venter
et al., 2018). We find a predicted net sequestration of C in soils under
natural vegetation where SOC gains were highest in the mesic Grass-
lands in the east while SOC losses were highest in semi-arid Nama
Karoo in the central-west area (Fig. 1). Mesic areas of SA have experi-
enced an increase in woody plant encroachment, i.e. loss of herbaceous
habitat (ca. 12% in the Grasslands and Savanna biomes, Venter et al.,
2018) and this is likely associated with the observed SOC increase in
these areas (we did not find fire frequency to be a driver of SOC in
SA). Data from the SA land cover assessments have been used to esti-
mate changes in the spatial extent of the IPCC land cover classes and
to generate an estimate of changes in carbon stocks and associated
GHG emissions within South Africa's National GHG Inventory
(Thompson, 2018). These authors estimate ca. 21,000 Gg CO2 equiva-
lents have been added to the national C sink through woody plant en-
croachment (conversion from a grassland to a forest land class).
However, if increased SOC is indeed associated with woody plant en-
croachment, it is in this context a component of ecosystem degradation
due to the associated loss of ecosystem function and provisioning ser-
vices (Archer et al., 2017; Skowno et al., 2017).

The loss of SOC is often associated with ecosystem or land degrada-
tion, broadly defined as “the many human-caused processes that drive
the decline or loss in biodiversity, ecosystem functions or ecosystem
services in any terrestrial and associated aquatic ecosystems” (Scholes
9

et al., 2018). A soil degradation index (SDI) and map of SA, which con-
siders SOC losses as degradation, was developed by Hoffman and Todd
(2000). We found that SOC trends over the last 35 years did not (west
and central areas) or only partially aligned (mesic east) with the SDI.
Areas in our map which showed particularly high rates of SOC loss
over the past 35 years were parts of northern Limpopo on the
Zimbabwean and Mozambican borders, and Northern Cape between
the Namibian border and North West Province. Interestingly, there
was no indication that SOC had declined in the subtropical thicket of
the Eastern Cape, despite the severe degradation (overgrazing) of this
vegetation type over more than a million hectares (Mills et al., 2015),
with concomitant losses of large amounts of SOC (Mills et al., 2005).
This we suggest is because the degradation of subtropical thicket oc-
curred predominantly during the 1900s and that the degradation is in
a stable state, with SOC no longer being lost. Future work would do
well to explain the spatial variation in SOC losses and gains at the re-
gional scale in a quantitative manner.

The relative importance of predictor variables in the Random Forest
model to predict SOC over SA (Fig. 4) are informative about the condi-
tions that contribute to SOC accumulation.While a number of correlates
probably influence SOC through both vegetation productivity and soil
carbon decomposition, there are a number of variables that are explic-
itly related to vegetation density. For example, net primary productivity,
NDVI and fractional woody cover all directly relate to vegetation den-
sity. Variation in LAI probably relates to the turnover in leaf matter on
a seasonal basis. These variables suggest that the limitation on SOC in
this region is generally the vegetation inputs. While globally, low tem-
perature strongly facilitates SOC accumulation, within this temperate
region it is more likely that water availability and edaphic properties
that determine vegetation density are of greater importance. Neverthe-
less, changes in SOC with elevation may be related to accumulation of
SOC under cooler conditions. Future iterations of the map can consider
possible drivers of SOC increases such as climate, atmospheric CO2,
fire, woody plant encroachment, and land management, as well as
their relative importance in each biome. Understanding drivers of SOC
loss and gain in a southern hemisphere country will contribute to a bet-
ter understanding of SOC dynamics in the global south. In addition, iter-
ations of the map that consider alternative scenarios of restoration and
rehabilitations, e.g. restoration of areas that are native but showing
signs of erosion, invasive plant invasion, etc. or rehabilitation of agricul-
tural areas to near-native states; and/or alternative cropping to increase
C storage (e.g. trees in already transformed areas). These hypothetical
scenarios could increase the value of the map as a tool for land use de-
cision making.

Restoration and “natural climate solution” agendas depend on target
areas making meaningful contributions to global CO2 sequestration or
reduction in greenhouse gas emissions (Griscom et al., 2017). According
to our study the total SOC in SA (5.6 Pg C) is ca. 0.37% of the global ter-
restrial SOC (1500 Pg C) while SA comprises ca. 0.82% of global land
cover. It is estimated that close to 20% of SA's natural land cover is trans-
formed, mainly by cultivation (12%), degradation of the natural cover
(5%), urban land use (1%), and forestry (1.5%, Fairbanks et al., 2000).
Assuming it is possible to restore ecosystem function to the ca. 5% of de-
graded native areas (an optimistic assumption), South Africa may be
able to contribute 0.23 Pg C to the global C sink, which is only 0.2% of
the estimated global SOC loss over the last 12,000 years (Sanderman
et al., 2017), in a region which is 0.82% of global land surface.

Our analysis was deliberately limited to soil under natural vegeta-
tion. As mentioned, future iterations may expand to include modelling
SOC in agricultural soils (Nayak et al., 2019) as well as estimate how
muchSOC could be gained by restoration of agricultural land and or nat-
ural but degraded areas. Such iterations could inform national restora-
tion and rehabilitation efforts by estimating potential additions to the
national C stock. Beside C it is important to consider ecosystem func-
tioning as a whole. Three global biodiversity hotspots (Myers et al.,
2000) occur in SA and two of these (Cape Floristic Region and Succulent
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Fig. 7. Landscape-scale maps of long-term average SOC as predicted by the model in the present study (A) and four other data sources (B–E). A very high-resolution satellite image is
shown on the top-left for reference.
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Karoo) have relatively low SOC and can be considered OCBILS (Hopper
et al., 2016; Hopper and Lambers, 2009). Thus low SOC soils can be as-
sociated with habitats of high biodiversity and conservation value. Cur-
rent climate mitigation efforts should therefore balance trade-offs
between carbon, biodiversity and overall ecosystem function. Initiatives
that trade in Cmay consider for example vehicles such as Climate, Com-
munity and Biodiversity Standards versus those that consider only C,
such as Verified Carbon Standards.

Although the SOC map presented here is at unprecedented spatial
resolution for a national-scale map, inaccuracies associated with the
South African National Land-Cover dataset (Thompson, 2018) and
roads are somewhat problematic. Also, the utility of the SOC map for
soil carbon policy and management agendas is limited by the map un-
certainty (MAE = 2.6 kg C m−2). For example, identifying significant
differences in SOC, whether at the landscape (e.g. fence-line contrast)
or regional (e.g. municipal boundary) scales is limited by this uncer-
tainty, necessitating a difference larger than 5.2 (i.e. 2 × 2.6) kg C m−2.
Aggregation over space does reduce uncertainty because positive and
negative errors within a region are cancelled out (Heuvelink et al.,
2020). Improved modelling techniques such as progressive machine
learning algorithms such as Artificial Neural Networks (Khaledian and
Miller, 2020)may also help. Themost important antidote to uncertainty
is, however, to increase the reference data used to calibrate the SOC
model. This aligns with the call for standardized soil sampling and soil
monitoring schemes where data, particularly those funded by the
state (e.g. governmental research councils), are made open-access for
advancing soil science (Smith et al., 2020). International databases of
this nature include ISRIC - World Soil Information (https://www.isric.
org/) and OpenGeoHub (https://opengeohub.org/about). Collecting re-
peated measures (i.e. time series) of SOC is particularly important if
Fig. 6. SOC mapping uncertainty based on regression of predicted on observed SOC values for
validation soil sample data (n = 1808; withheld from model training) with a red linear regres
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we are to validate estimates of SOC change such as those mapped in
Figs. 2 and 3. In thisway, SOCmonitoringwith remote sensing could fol-
low the model already operationalized in real-time deforestation mon-
itoring (e.g. Global Forest Watch: https://www.globalforestwatch.org/
map/).

In summary, the limitations of our SOC maps are that (1) there are
uncertainties in the SOC estimation that are difficult to quantify spa-
tially, particularly in thewest of the countrywhere there are limited ref-
erence data; (2) our estimates of SOC trends have not been validated
using repeated soil sampling due to a dearth of such reference data;
(3) our data is limited to natural vegetation and the top 30 cm of the
soil horizon. Despite these limitations, ourmaps serve as useful counter-
points to both global (SoilGrids) and continental (iSDA) maps of SOC.
Firstly, we use a denser set of reference data in a model specifically cal-
ibrated to SA which produces less bias and greater accuracy than the
iSDA 30 m map. Secondly, by excluding SOC samples from cultivated
lands, we limit the potential for over-estimating SOC under natural veg-
etation. This is because cultivated lands are generally located on nutri-
ent rich soils and may bias model extrapolation into non-cultivated
areas. Finally, by utilizing 35 years of satellite data, we offer novel
maps of SOC change which form the basis for further validation and
development.

5. Conclusion

The accurate high-resolution map developed here for natural areas
in South Africa (84% of the land area) furthers our understanding of
how climate,morphometrics and ecosystemprocesses interact to deter-
mine SOC in an area of the world with sparse data availability. This
should be useful for identification of areas in need of protection or
the present SOC model (A) and four other data sources (B–E). Data points represent the
sion line and dashed 1:1 line for reference.

https://www.isric.org/
https://www.isric.org/
https://opengeohub.org/about
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
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restoration. We should be cognizant, however, that SOC increases are
limited by inherent climate and edaphic characteristics of the areas
and that CO2 mitigation efforts should balance trade-offs between car-
bon, biodiversity and overall ecosystem function.
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