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a b s t r a c t 

The paper present a streamlined workflow, using multivariate analyses of environmental variables in 

combinations with GIS overlay analyses that provide methods to extract and analyse major environmental and 

climatic gradients by using fishnet polygons as sample units. The method opens for illustrating multivariate 

results as geographical maps and as PCA plots using sample scores as coordinates. Then the PCA sample scores 

can be allocated to fishnets polygons and each sample score can be assigned with its ID and other attributes 

to each fishnet polygon. This is used to construct a cumulative impact model based on PCA fishnet polygon 

frequency scores and further to measure representativity of nature protected areas. It also provide possibilities 

for testing of a range of different hypothesis. The method present the numerical results visually in both the PCA 

sample score plot and in a geographical map, and can be used as a part of cumulative impact analysis to assess 

representativeness of mapped or modelled valued environmental components (VECs). It can be applied to existing 

as well as planned or potential infrastructure and other technical developments. 

• The Stepless Multivariate Model is an explicit, transferable and reproducible procedure to conduct systematic 

assessment of cumulative impacts based on an analysis of representativity. 
• The method can be used to illustrate the analysis both geographically and numerically. 
• The procedure in the method has a potential wide range of applications and can form a basis for hypothesis 

testing. 
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Specifications table 

Subject Area: Environmental Science 

More specific subject area: Numerical GIS analysis of environmental data for planning 

Method name: Utilizing the interface between PCA plots and GIS overlay analyses 

Name and reference of original 

method: 

The original method is referred to as “PCA-Norway” among Norwegian nature 

research scientists and by the management, and published in Bakkestuen, V., 

Erikstad, L. & Økland, R.H. 2008. Step-less models for regional environmental 

variation in Norway. – J. Biogeography 35: 1906-1922. 

Resource availability: The sources of data were: terrain data (100-m resolution digital elevation model, 

DEM) from the Norwegian Mapping Authorities; raster climatic data with 1-km 

resolution based on the 1960–90 normal ( [2] a; [7] ) compiled by the 

Meteorological Institute ( [15] , 20 0 0); hydrological data from the Norwegian 

Water Resources and Energy Directorate; and geological data from the 

Norwegian Geological Survey (based on vector data scale 1:250,0 0 0) 

For resources elsewhere (than Norway): National databases. Supplements: Climate 

data are widely available through WorldClim [8] , Google Earth Engine (GEE) or 

national databases. Terrain or elevations models (DTMs or DEMs) are available 

from HYDRO1k, from SRTM or MERIT DEM which is available in GEE, and 

national databases. Similar terrain derivative variables as used in [3] or other 

relevant ecological terrain variables, can be derived from elevation models as 

described in Amatulli et al. [1] . Other sources that are globally available, are land 

use maps and satellite derived outputs, from for instance from the COPERNICUS 

NASA and ESA programs. These are freely accessible in GEE or in national data 

servers. Many countries also have their own ecological base maps that often can 

be accessible in finer or more detailed scales. For open access GIS we can 

recommend programs or servers like QGIS, GDAL, GRASS or Google Earth Engine. 

The method described consist of two main elements: 

• Establishing a step-less model for regional environmental variation in the region of interest and. 
• Using this model to assess representativity and cumulative effects. 

The first element is previously presented in Bakkestuen et.al. (2008) [3] . This procedure for

establishing the stepless model has three main stages: 1- Data acquisition, 2- Data preparation and

ordination and 3- Interpretation. The second element that handles representativity and cumulative 

effects are based on methods in the associated paper Erikstad et al. [5] . 

Tutorial 

This tutorial includes nine separates steps. These are summarized in Fig. 1 . 

Data acquisition 

( Step 1 ) Available GIS layers that are assumed to be of importance for environmental variation and

gradients in the targeted area should be gathered in a GIS project and stacked upon each other. This

can be done in a freely available desktop GIS like QGIS or similar software. The selection of GIS

layers should focus on those that are believed to contribute in explaining the main environmental

variation at the spatial extent at your targeted area. As an example, a large targeted area should

contain climatical data and a small targeted area should contain high resolution topographic data

or maybe soil characteristics etc. 

( Step 2 ) Here you superimpose a fishnet of desired size (extent and resolution) on the environmental

layers and extract values to the fishnet polygons. You will now extract data from your GIS layers to the

each of the polygons in the fishnet. This procedure will have different names depending on your GIS

software; it is called zonal statistics in QGIS, zonal statistics as table in ArcMap, and ArcGIS Pro and

reduce regions in Google Earth Engine to name some commonly used software. You can summarize

or extract (the terms used synonymously here) your data by different measures or reducers like sum,

max, min, range, variance etc. 
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Fig. 1. Graphical overview of the method presented. 
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 Step 3 ) Normalization and standardization of variables 

All variables should be transformed to zero-skewness and kurtosis standardized by division

ith their expected standard deviations, (6/n) 0.5 [14] . Acceptable homogeneity of variances

homoscedasticity) is achieved by transforming all variables to zero skewness (using transformation

ormulae of [11] ): 

Three transformation formulae according to Økland et al. [11] can be used: 

ykj ′ = eckxkj (1)

ykj ′ = ln ( ck + xkj ) (2)

ykj ′ = ln ( ck + ln ( ck + xkj ) ) (3)

here xkj is the original value of variable k in plot j and ck is a variable specific parameter that

ives the transformed variable Y´ = {ykj´} zero skewness. The first equation is applied to left-skewed

ariables (standardized skewness < 0), the next equation to right-skewed variables. The last equation

s applied to right-skewed for which no ck could be found by the middle equation that resulted in

tandardised skewness = 0. After transformation, all variables Y´were ranged to obtain new variables

 = {ykj} on a 0-1 scale: 

ykj = 

(
ykj ′ − min 

(
ykj ′ 

))
/ ( max ( ykj ) −min ( ykj ) ) (4)

rdination and interpretations 

 Step 4 ) The standardized and normalized matrix is now ready to be subjected to PCA ordination [4] .

CA ordination can be performed by using the vegan package [12] in R software (R Development Core
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Fig. 2. The representation of eight National Parks in the PCA sample plot in a GIS project, indicating how much of the 

bioclimatic variation in Norway that is captured by these areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Team 2021). The same procedure are available in open access GIS programs like QGIS and Google

Earth Engine. 

( Step 5 ) Interpretation of PCA and principal components is based on variation explained by

components and finding which (“species” or environmental) variables are most strongly correlated 

with each principal component. By producing a biplot, these correlations can be interpreted visually. 

Variables most closely correlated to each component are the ones with highest loadings along the

component axes. Accordingly, the ones with low loadings are little correlated with the corresponding 

component. Loadings along principal components makes a vector that show which directions sample 

variable values increases. In a two-dimensional biplot, the sample plots that are positioned in the

same direction as the environmental vectors generally contain increasing values for this environmental 

variable . For instance, sample plots that are located in the same direction as the elevation vector are

the ones most closely correlated, i.e. the elevation will increase in sample plots along the direction of

the elevation vector. 

( Step 6 ) The sample plot scores from the PCA should now be imported to the GIS as an attribute table.

Now you shall make two GIS projects or one project with two views showing (1) the PCA diagram

by adding sample plot scores from the two first principal components (or one or two others) as x

and y to the GIS normally performed by a procedure called “add X and Y point data” and (2) join the

fishnet polygons with principal components values into the fishnet polygon attribute table. The PCA 

sample plot scores can then be visualized in the GIS PCA diagram and geographically on the fishnet.

The resulting patterns can be assessed and further interpreted in combination with other geographical

maps like existing botanical atlas maps or other ecological relevant maps. Note that PCA-scores are

often centered around zero and contain both positive or negative values, which may switch between

being positive and negative when running PCA several times. An example of having a PCA diagram in

a GIS project is shown in Fig. 2 . 

( Step 7 ) Step 7 is to divide the PCA sample plot score diagram into PCA diagram fishnet polygons.

The sizes of these fishnet polygons can be chosen independently for each study regarding how much

details that you want this method to segregate. PCA sample plot scores are normally standardized

from values −1 to 1. We have experienced that dividing the PCA diagram fishnet into 20 equally
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arge segments is sufficient for assessing cumulative effects. Each segment polygon thus represents

n approximate grouping of environmental conditions in similar segments, It is important to notice

hat this grouping per definition is environmental and not geographical. The division of the PCA

ample plot makes it possible to study the frequency of samples in each sample plot segment

fishnet polygons) for a more detailed analysis of the PCA diagram when the diagram consist of an

verwhelming number of samples. 

 Step 8 ) Step 8 is a process similar to step 2 where the frequencies of occurrences of sample plots are

ounted in the PCA diagram fishnet polygons. Having access to the sample attribute table makes it

ossible to visualize how much ecological or bioclimatical space each attribute span in the statistical

CA model. The attributes may represent a county or for instance different national parks ( Fig. 1 ) or

n area with defined environmental characteristics or value (valued environmental component – VEC).

his is a visual step towards an assessment of representativeness. 

 Step 9 ) Step 9 consists of calculating the proportions of sample plots with human impact. Here

ccurrences of human impacts in each environmental segment related with the VECs are counted and

ummed up. The proportions of influenced polygons in each ecological segments is now an indicator

f added or cumulative effects. 

An extra optional step is to import the indicator of accumulated effect values back to the GIS to

isualize these geographically as part of a map of the area of interest as a point file or aggregated in

 relevant polygon file. 

 walk through example based on real data 

The data set used in this walk through was first reported in Bakkestuen et.al. 2008 [3] at a

esolution of 5 km pixel size for all mainland Norway. It was further developed and presented in

n associated paper by Erikstad et al. [5] in a more detailed resolution (1km pixel size as well as

 courser size of 10 km). It contains fifty-four climatic, topographical, hydrological and geological

ariables. These variables was collected from different types of data sources. A full list of variables

f all types are listed and explained in Table 1 in Bakkestuen et al. [3] . 

All variables were summarized in ArcGIS Spatial Analyst as grid-cell means with the exception of

levation relief (which was recorded as the range of observed elevation values in each cell) and terrain

ariation (standard deviation of observed slopes for the grid cell). The procedure followed the tutorial

escribed in this article. 

The first four principal components explained between 75% and 85% of the variation in the data

ets dependent on the resolution between1 × 1 km and 10 × 10 km sample plot sizes. The PCAs

evealed four consistent environmental gradients, in order of decreasing importance: (1) regional

ariation (gradient) from coast to inland and from oceanic/humid to continental areas; (2) regional

ariation from north to south and from high to low altitudes; (3) regional variation from north to

outh and from inland to coast, related to solar radiation; and (4) topographic (terrain relief) variation

n finer scales than (1–3). The first two PCA axes corresponded to the two bioclimatic gradients

sed in expert classifications of Norway into biogeographical regions: vegetation sections (from highly

ceanic to slightly continental) and vegetation zones (from nemoral to alpine zones). A comparison

etween PCA ordination results and the expert classification Fig 3 into vegetation regions by Moen

10] , represented as a map scaled 1:1,0 0 0,0 0 0, was made by Bakkestuen et al. [3] in several steps.

irst, the area covered by each vegetation zone and section [10] was calculated by using the option

or summarizing zones in ArcView Spatial Analyst. Second, 1-km grid cells that were homogeneous,

n the sense that they were assigned uniquely to one of Moen’s zones or one of the sections, were

ssigned to this class, while other cells were discarded from further analysis. Third, we calculated the

osition of each grid cell along each of 360 directions (adjacent directions separated by an angle of 1)

n the space defined by PCA ordination axes 1 and 2. This was done because the best correspondence

etween PCA positions and Moen’s zones, and sections and zones, respectively, might not be along

he main PCA axes themselves, but along combinations of axes. For each direction, the rank-ordered

omogeneous grid-cell positions were divided into groups, so that the number of cells in each group

as proportional to the relative area of the zones, ordered from nemoral to alpine zones and vice
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Fig. 3. The two first PCA gradients. The first interpreted as a oceanic to continental gradient and the second a temperature 

gradient going from lowland/southern latitudes to highland and arctic condition. Figure marked a was the result of the PCA, 

while b is the original mapping of vegetation zones and sections by [10] . 

Fig. 4. To the left is the PCA sample plot diagram for Norway based on the two first PCA axes in Bakkestuen et al. [3] . To 

the right frequency of sample scores based on a 1/20 of the gradient length are shown. Note that even if the plots are spread 

neatly over a large area over the diagram, the frequency reveals a gravity of the Norwegian land mass more in the direction of 

arctic and continental conditions. 

 

 

 

 

 

 

versa, and with the relative areas of the sections, ordered from strongly oceanic to slightly continental,

and vice versa. Fourth, for each of Moen’s zones and sections, we found the directions with the

highest grid-cell concordance (the highest fraction of homogeneous grid cells correctly classified to 

zone or section). These directions are termed the step-less zone model and the step-less section

model, respectively. 

We divided each segment to represent 1/20 of the gradient spanned by the PCA-axis for the whole

national model ( Fig. 4 ) and the PCA representation of the given VEC was calculated and visualized. 

We have also tested the method for assessment of the representativeness of the localization of

protected areas in Norway [6] ( Fig. 5 ). The frequency representation offer an opportunity to relatively
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Fig. 5. Left: Plots in the PCA-diagram of Norway (green dots) which are represented by protected areas (red dots. Right: the 

proportion of sample plots in protected areas extracted in a fishnet. The analysis reveals gaps along the coast and in the 

southern parts of Norway. 
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asy analyzing statistically the validity of a variety environmental hypothesis, although not pursued

y us at the present stage. 

In our analysis of cumulative effects by hydropower development in Nordland county in Norway

5] , we collected spatial data representing modelled river gorges (the VEC) as well as existing

nfrastructure and hydroelectric development. We used these attributes to gather information about

he position of a modelled valued ecological component (the midpoint of river gorges) and overlay

hese with the position of existing infrastructure, existing hydropower facilities, plans for future

ydropower development and a map showing potential small-scale hydropower development. We

ollected their PCA position and then derived what proportion of river gorges in any given climatic

egment either are presently affected by existing infrastructure and hydroelectric development, or

ould be affected by either proposed hydroelectric projects or other identified potential sites. 

ethodological aspects: the influence of scale and variables selected 

The method may be vulnerable to certain effects related to scale, grid cell size and number of

ample units. We specifically would like to address some issues and share some thoughts with respect

o how to handle them in practical work. 

The spatial resolution of available climatic data usually restrict the users from addressing grain sizes

below 1 km. However, our experience of the effect of grain sizes in the range 1–10 km, reveals

consistent results over this entire range: in Bakkestuen et al. [3] the same four gradients were

recovered in all models and in the same order. This shows that the potential aggregation modifiable

areal unit problem (MAUP) scale problem [9 , 13] is not present within this range of grain sizes and

this set of variables. 

We also have experienced that if the number of sample plots is high enough to represent the major

directions of variation properly, which for Norway is achieved by 40 0 0 cells (data points), a further

increase in the size of the data set (increase the geographical resolution) has a minor impact on the

overall results, except that the fraction of explained variation decreases slightly. 

The method presented is based on interpretation and analysis on a two-dimensional PCA output

plot. It is possible to expand the method to include one or more extra dimensions by including

more principal axes in the steps described. 
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