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Abstract: Land cover maps are important tools for quantifying the human footprint on the environ-

ment and facilitate reporting and accounting to international agreements addressing the Sustainable 

Development Goals. Widely used European land cover maps such as CORINE (Coordination of 

Information on the Environment) are produced at medium spatial resolutions (100 m) and rely on 

diverse data with complex workflows requiring significant institutional capacity. We present a 10 

m resolution land cover map (ELC10) of Europe based on a satellite-driven machine learning work-

flow that is annually updatable. A random forest classification model was trained on 70K ground-

truth points from the LUCAS (Land Use/Cover Area Frame Survey) dataset. Within the Google 

Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB 

of Sentinel imagery within approx. 4 days from a single research user account. The map achieved 

an overall accuracy of 90% across eight land cover classes and could account for statistical unit land 

cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that 

of CORINE (100 m) and other 10 m land cover maps including S2GLC and FROM-GLC10. Spectro-

temporal metrics that capture the phenology of land cover classes were most important in produc-

ing high mapping accuracies. We found that the atmospheric correction of Sentinel-2 and the 

speckle filtering of Sentinel-1 imagery had a minimal effect on enhancing the classification accuracy 

(< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sen-

tinel-2 alone and by 10% compared to Sentinel-1 alone. The addition of auxiliary data (terrain, cli-

mate and night-time lights) increased accuracy by an additional 2%. By using the centroid pixels 

from the LUCAS Copernicus module polygons we increased accuracy by <1%, revealing that ran-

dom forests are robust against contaminated training data. Furthermore, the model requires very 

little training data to achieve moderate accuracies—the difference between 5K and 50K LUCAS 

points is only 3% (86 vs. 89%). This implies that significantly less resources are necessary for making 

in situ survey data (such as LUCAS) suitable for satellite-based land cover classification. At 10 m 

resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, 

and therefore holds potential for aerial statistics at the city borough level and monitoring property-

level environmental interventions (e.g., tree planting). Due to the reliance on purely satellite-based 

input data, the ELC10 map can be continuously updated independent of any country-specific geo-

graphic datasets. 
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1. Introduction 

Satellite-based remote sensing of land use and land cover has afforded dynamic 

monitoring and quantitative analysis of the human footprint on the biosphere [1]. This is 

important because land cover change is a significant driver of the global carbon cycle, 

energy balance and biodiversity changes [2,3] which are processes of existential conse-

quence. Land cover maps are often the primary inputs into accounting frameworks that 
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attempt to monitor countries’ efforts towards addressing the Sustainable Development 

Goals (SDGs) [4]. For instance, land cover maps are often used to set targets and indicators 

for meeting SDG 2 of zero hunger and SDG 15 to monitor efforts to reduce natural habitat 

loss (e.g., deforestation alerts). Ecosystem service models and accounts also rely on land 

cover data as input [5] and land cover maps are thereby important for the valuation and 

conservation of important ecosystems. In light of global climate change and a rapidly de-

veloping world, an increasing number of applications, such as precision agriculture, wild-

life habitat management, urban planning, and renewable energy installations, require 

higher resolution and frequently updated land cover maps. 

The advent of cloud computing platforms like the Google Earth Engine [6] has led to 

significant advances in the ability to map land surface changes over time [7,8]. This is both 

due to the enhanced computing power and the availability of dense time series data from 

medium to high resolution sensors like Sentinel-2 [9]. The transition to time series imagery 

allows one to capture the seasonal and phenological components of land cover classes that 

would otherwise be missed with single time-slice imagery. The application of such spec-

tro-temporal metrics to mapping forest [10] and other land cover types [11] has shown 

increased classification accuracies. In addition, the ability to adopt machine learning algo-

rithms in cloud computing environments has further enhanced the precision of land cover 

mapping [4]. 

The CORINE (Coordination of Information on the Environment) land cover map of 

Europe [12] is perhaps the most widely used land cover product for area statistics and 

research [13]. The CORINE map currently requires significant institutional capacity and 

coordination from the European member states, the Eionet network, and the European 

Environmental Agency. For instance, the 2012 product involved 39 countries, a diversity 

of country-specific topographic and remote sensing datasets and took two years to com-

plete. To ease the manual workload, the wealth of data from the Copernicus Sentinel sen-

sors has been somewhat integrated into the CORINE mapping workflow and has also led 

to the development of Copernicus Land cover services high spatial resolution maps 

(https://land.copernicus.eu/pan-european/high-resolution-layers, accessed on 15 May 

2021). Recently, Sentinel-2 data have been used to create a 10 m pan-European land 

cover/use map (S2GLC) for cairca 2017 (http://s2glc.cbk.waw.pl/, accessed on15 May 2021) 

[14]. This is a meaningful advancement on previous pan-European mapping efforts, how-

ever, the methodology behind S2GLC involves a land cover reference dataset and some 

post-processing steps that are not open source or easily reproducible. Pflugmacher et al. 

[15] recently developed an independent, research-driven approach to pan-European land 

cover mapping with Landsat data at 30 m for cairca 2015. This compares favourably with 

the CORINE map, is reproducible and does not require harmonising and collating coun-

try-specific datasets from different European member states. Nevertheless, there remains 

potential for a similar open source approach that leverages both Sentinel-2 optical and 

Sentinel-1 radar sensor data to map land cover at 10 m resolution [16]. 

Land cover maps made with open data policies and open science principles can have 

transfer value to other areas of the globe [17], particularly when pre- and post-processing 

decisions are made transparent. Like the European maps mentioned above, the studies 

documenting continental land cover classifications at 30- or 10-m resolution for Africa 

[18,19], North America [20] and Australia [21] have not communicated methodological 

lessons or published source codes. The same is true for global land cover products such 

as the Landsat-based GLOBLAND30 [22] or Sentinel-based FROM-GLC10 [23]. This 

makes it difficult to draw generalizable conclusions that the benefit of remote sensing and 

the land cover mapping community at large. Specifically, it is not clear how satellite and 

reference data pre-processing decisions affect the accuracy of land cover classifications at 

this scale. Such decisions may concern the atmospheric correction of optical imagery (Sen-

tinel-2), the speckle filtering of radar imagery (Sentinel-1), or the fusion of optical and 

radar data within one classification model. When trying to classify land cover over very 

broad environmental gradients where spectral signatures vary substantially within a 
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given land cover class, one may also decide to include auxiliary variables to increase 

model accuracy [15]. Such decisions have trade-offs between computational efficiency and 

classification accuracy which are important to quantify when operationalising land cover 

classification at continental scales. 

Another important point of consideration in operational land cover classification is 

the collection and cleaning of reference data (“ground-truth”) that are used to train a clas-

sification model. The quality, quantity and representativity of reference data can have sig-

nificant effects on the accuracy and consequent utility of a land cover map [17]. In Europe, 

the Land Use/Cover Area Frame Survey (LUCAS) dataset consists of in situ land cover 

data collected over a grid of point locations over Europe [24]. However, when aligning 

satellite pixels data with LUCAS grid points, the geolocation uncertainty in both datasets 

can lead to mislabelled training data for land cover classification. To make LUCAS data 

suitable for earth observation, EUROSTAT introduced a new module (i.e., the Copernicus 

module) to the LUCAS survey in 2018 [25]. The Copernicus module has quality-assured 

and transformed 58,428 of the LUCAS points into polygons of homogeneous land cover 

that are suitable for earth observation purposes. Given that Weigand et al. [26] have 

shown that intersecting Sentinel pixels with LUCAS grid points already yields accurate 

land cover classifications, it remains to be seen how the inclusion of the Copernicus LU-

CAS polygons improves classification accuracy. Furthermore, previous attempts to inte-

grate LUCAS data with remote sensing for land cover classification [15,26,27] have not 

fully assessed the trade-off between the reference sample size, model accuracy and the 

spatial distribution of prediction uncertainty. This information is important for planning 

future ground-truth data collection missions and remote sensing integrations. 

Here, we aimed to build upon previous efforts to generate a 10 m Sentinel-based pan-

European land cover map (ELC10) for 2018 using a reproducible and open source machine 

learning workflow. In doing so, we aim to explicitly test the effect of several pre-model 

data processing decisions that are often overlooked. Concerning satellite data processing, 

these include the effect of (1) Sentinel-2 atmospheric correction; (2) Sentinel-1 speckle fil-

tering; (3) fusion of optical and radar data; and (4) addition of auxiliary predictor varia-

bles. Concerning land cover reference data, we aim to test the effect of (5) quality-checking 

reference points through the use of the LUCAS Copernicus module, and (6) the effect of 

decreasing the reference sample size. Finally, we compare ELC10 to existing land cover 

maps both in terms of accuracy and utility accounting for area statistics. 

2. Methods 

2.1. Study Area 

We defined the scope of our study area to include all of Europe from 10°W to 30°E 

longitude and 35°N to 71°N latitude, except for Iceland, Turkey, Malta and Cyprus (Figure 

1). This area is similar to the CORINE Land Cover product produced by the Copernicus 

Land Monitoring Service covering the European Economic Area of 39 countries and ap-

proximately 5.8 million square kilometres. Europe covers a wide range of climatic and 

ecological gradients primarily explained by the North–South latitudinal gradient [28]. 

Southern regions are arid warmer climates supporting a diverse range of Mediterranean 

vegetation. Northern regions are mesic, cooler climates characteristic of Boreal and Atlan-

tic zones with shorter growing seasons and lower population densities leading to forest-

dominated landscapes. Europe has a significant anthropogenic footprint with 40% of the 

land covered by agriculture, including semi-natural grasslands. 
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Figure 1. Study area with available land cover reference points (A) and Sentinel (B, C) satellite imagery. Each point in A 

is a sampling location (53,476 polygons and 282,854 points) with a land cover class label. The number of available cloud-

free Sentinel-2 pixels and Sentinel-1 pixels during 2018 are mapped in B and C, respectively. 

2.2. Land Cover Reference Data 

LUCAS is a European Union initiative to gather in situ ground-truth data on land 

cover over 27 member states and is updated every three years [29]. It excludes Norway, 

Switzerland, Liechtenstein, and the non-EU Balkan states. Each iteration includes visiting 

a sub-sample of the 1,090,863 geo-referenced points within the LUCAS 2 km point grid. 

Under the 2018 LUCAS Copernicus module, 58,428 of the point locations have been qual-

ity assured and transformed into polygons of homogenous land cover specifically tailored 

for earth observation (Figure 2). The polygons are approximately 0.5 ha in size and are 

therefore (by design) large enough so that at least one Sentinel 10 × 10 m pixel is contained 

fully within them with some space for registration error. We used the collated and cleaned 

Copernicus Module polygon dataset (n = 53,476) provided by d’Andrimont et al. [25]. The 

centroid points of the Copernicus Module polygons (hereafter referred to as LUCAS pol-

ygon centroids) were used as the core of our reference sample for land cover classification. 

The top-level of the LUCAS land cover typology was used in the present analysis includ-

ing artificial land, cropland, woodland, shrubland, grassland, bare land, wetland and wa-

ter (Table 1). 

After establishing baseline land cover proportions using the CORINE land cover da-

taset (re-coded to our typology) as a reference [12], we found that the distribution of the 

LUCAS polygons were biased toward cropland and woodland land cover classes (Figure 

S1). Consequently, there were very few LUCAS polygons for water, wetland, bare land 

and artificial land classes (Figure S1). We therefore performed a bias correction of the ref-

erence sample (Figure 2) by using the harmonised LUCAS theoretical grid point (hereafter 

LUCAS points) data [24] to supplement the LUCAS polygon centroid dataset so that the 

overall reference sample was representative of the CORINE proportions. Although the 

LUCAS theoretical points have not been transformed into polygons, they are still appro-

priate for earth observation applications [15] after applying certain quality control proce-

dures. We employed the metadata filtering (Figure 2) outlined in Weigand et al. [26] to 

filter out points where the land cover parcel area was <0.5 ha, or covered <50% of the 

parcel. As in Pflugmacher et al. [15], we also excluded classes with potential thematic and 

spectral ambiguity including linear artificial features (LUCAS LC1 code A22), other arti-

ficial areas (A39), temporary grasslands (B55), spontaneously re-vegetated surfaces (E30) 

and other bare land (F40). This resulted in 282,854 labelled point locations available to 
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supplement the LUCAS polygon sample. Of these, 18,009 LUCAS points were selected 

following an outlier ranking procedure to remove mislabelled or contaminated LUCAS 

points. 

 

 

Figure 2. Methodological workflow for evaluating the pre-processing of decisions in generating the final ELC10 land cover 

map. Underlined outcomes are those that were chosen for the final model. Abbreviations: S1—sentinel 1; S2—sentinel 2; 

Aux vars—auxiliary variables. 

Table 1. Land cover typology adopted along with LUCAS codes and descriptions. 

Land Cover Label LUCAS Class Definitions and Sub-Class Inclusions and Exclusions 

Artificial land 

Artificial land (A00): Areas characterised by an artificial and often impervious cover of con-

structions and pavement. Includes roofed built-up areas and non-built-up area features such as 

parking lots and yards. Excludes non-built-up linear features such as roads, and other artificial 

areas such as bridges and viaducts, mobile homes, solar panels, power plants, electrical substa-

tions, pipelines, water sewage plants, open dump sites. 

Cropland 

Cropland (B00): Areas where seasonal or perennial crops are planted and cultivated, including 

cereals, root crops, non-permanent industrial crops, dry pulses, vegetables, and flowers, fodder 

crops, fruit trees and other permanent crops. Excludes temporary grasslands which are artifi-

cial pastures that may only be planted for one year. 

Woodland 

Woodland (C00): Areas with a tree canopy cover of at least 10% including woody hedges and 

palm trees. Includes a range of coniferous and deciduous forest types. Excludes forest tree 

nurseries, young plantations or natural stands (< 10% canopy cover), dominated by shrubs or 

grass.  

Shrubland 

Shrubland (D00): Areas dominated (at least 10% of the surface) by shrubs and low woody 

plants normally not able to reach >5 m of height. It may include sparsely occurring trees with a 

canopy below 10%. Excludes berries, vineyards and orchards. 
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Grassland 

Grassland (E00): Land predominantly covered by communities of grassland, grass-like plants 

and forbs. This class includes permanent grassland and permanent pasture that is not part of a 

crop rotation (normally for 5 years or more). It may include sparsely occurring trees within a 

limit of a canopy below 10% and shrubs within a total limit of cover (including trees) of 20%. 

This may include: dry grasslands; dry edaphic meadows; steppes with gramineae and artemi-

sia; plain and mountainous grassland; wet grasslands; alpine and subalpine grasslands; saline 

grasslands; arctic meadows; set aside land within agricultural areas including unused land 

where revegetation is occurring; clear cuts within previously existing forests. Excludes sponta-

neously re-vegetated surfaces consisting of agricultural land which has not been cultivated this 

year or the years before; clear-cut forest areas; industrial “brownfields”; storage land. 

Bare land 

Bare land and lichens/moss (F00): Areas with no dominant vegetation cover on at least 90% of 

the area or areas covered by lichens/ moss. Excludes other bare soil, which includes bare arable 

land, temporarily unstocked areas within forests, burnt areas, secondary land cover for tracks 

and parking areas/yards. 

Water 

Water areas (G00): Inland or coastal areas without vegetation and covered by water and 

flooded surfaces, or likely to be so over a large part of the year. Additionally, includes areas 

covered by glaciers or permanent snow. 

Wetland 
Wetlands (H00): Wetlands located inland and having fresh water. Additionally, wetlands lo-

cated on marine coasts or having salty or brackish water, as well as areas of a marine origin. 

The outlier ranking procedure involved extracting Sentinel-2 data (see Section 2.3. 

for details) for pixels intersecting LUCAS points. These were fed into a random forest (RF) 

classification model (see Section 2.5 for details) which was used to calculate classification 

uncertainty for each LUCAS point. The RF model iteratively selects a random subset of 

data to generate decision trees which are validated against the withheld data. During each 

iteration, the model generates votes for the most likely class label. We extracted the frac-

tion of votes for the correct land cover class at each LUCAS point after bootstrapping the 

RF procedure 100 times. We acknowledge that this bootstrapping of the RF model itself 

may not be necessary, however, it may smooth over any artifacts introduced from the 

internal bootstrapping of a single RF model. LUCAS points with a high fraction of votes 

(close to 1) can be considered as archetypal instances of the given land cover class, whereas 

those with a low fraction of votes (close to 0) are considered as mislabelled or spectrally 

contaminated. We ranked the LUCAS points by their fraction of correct votes and selected 

the topmost points for each land cover class to supplement the LUCAS polygon centroids 

so that the final land cover proportions matched that of the CORINE dataset. The number 

of supplemental LUCAS points needed (n = 18,009) was determined as relative to the most 

abundant LUCAS polygon class (cropland in Figure S1). 

2.3. Sentinel Spectro-Temporal Features 

All remote sensing analyses were conducted in the Google Earth Engine cloud com-

puting platform for geospatial analysis [6]. We processed all Sentinel-2 optical and Senti-

nel-1 synthetic aperture radar (SAR) scenes over Europe during 2018. This amounts to a 

total of 239,818 satellite scenes which would typically require approx. 700 TB storage space 

if not for Google Earth Engine and cloud computation. The Sentinel satellite data were 

used to derive spectro-temporal features as predictor variables in our land cover classifi-

cation model. Spectro-temporal features were used to capture both the spectral and tem-

poral (e.g., phenology or crop cycle) characteristics of land cover classes and offer en-

hanced model prediction accuracy compared to single time-point image classification 

[15,30]. To generate model training data, spectro-temporal metrics were extracted for Sen-

tinel pixels intersecting the LUCAS points, or the centroids of the LUCAS polygons. 
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Sentinel-2 images for both Top of Atmosphere (TOA; Level 1C) and Surface Reflec-

tance (SR; Level-2A) were used to test the effect of atmospheric correction on classification 

accuracies (Q1 in Figure 2). The scenes were first filtered for those with less than 60% 

cloud cover (129,839 removed of 280,420 scenes) using the “CLOUDY_PIXEL_PERCENT-

AGE” scene metadata field. We then performed a pixel-wise cloud masking procedure 

using the cloud probability score produced by the S2cloudless algorithm [31]. S2cloudless 

is a machine learning-based algorithm and is part of the latest generation of cloud detec-

tion algorithms for optical remote sensing images. After visually inspecting the cloud 

masking results across a range of Sentinel-2 scenes, we settled on a cloud probability 

threshold of 40% for our masking procedure. After cloud masking and mosaicking two 

years’ worth of Sentinel-2 scenes, the cloud-free pixel availability ranged from less than 

10 to over 100 pixels over the study area (Figure 1b). 

Using the cloud-masked Sentinel-2 imagery, we derived the median mosaic of all 

spectral bands. The median mosaic was derived by calculating the pixel-wise median 

value across the time series of images within the year. In addition, we calculated the fol-

lowing spectral indices for each cloud-masked scene: normalised difference vegetation 

index [32], normalised burn ratio [33], normalised difference built index [34], and normal-

ised difference snow index [35]. For each spectral index, we used the temporal resolution 

to calculate the 5th, 25th, 50th, 75th and 95th percentile mosaics as well as the standard devi-

ation, kurtosis and skewness across the two-year time stack of imagery. We derived the 

median NDVI values for the summer (Jun–Aug), winter (Dec–Feb), spring (Mar–May), 

and fall (Sep–Nov). The spectro-temporal metrics described above have been extensively 

used to map land cover and land use changes with optical remote sensing [36]. Finally, 

several studies have found that textural image features (i.e., defining pixel values from 

those of their neighbourhood) for Sentinel-2 imagery significantly enhanced land cover 

classification accuracy [26,37]. Therefore, we calculated the standard deviation of median 

NDVI within a 5 × 5 pixel moving window. 

Sentinel-1 SAR Ground Range Detected data were pre-processed by Google Earth 

Engine, including thermal noise removal, radiometric calibration and terrain correction 

using global digital elevation models. Sentinel-1 scenes were filtered for interferometric 

wide swath and a resolution of 10 m to suit our land cover classification purposes. We 

performed an angular-based radiometric slope correction using the methods outlined in 

Vollrath et al. [38]. SAR data can contain a substantial speckle and backscatter noise which 

is important to address particularly when performing pixel-based image classification. 

We applied a Lee-sigma speckle filter [39] to the Sentinel-1 imagery to test the effect on 

classification accuracy (Q2 Figure 2). Following pre-processing, we calculated the median 

and standard deviation mosaics for the time stacks of imagery including the single co-

polarised, vertical transmit/vertical receive (VV) band and the cross-polarised, vertical 

transmit/horizontal receive (VH) band, as well as the ratio between them (VV/VH). 

2.4. Auxiliary Features 

A challenge of classifying regional-scale land cover is that models relying on spectral 

responses alone may be limited by the fact that land cover characteristics can change dras-

tically between climate and vegetation zones. For example, a grassland in the Mediterra-

nean will have very different spectro-temporal signatures to a grassland in the boreal 

zone. Previous regional land cover classification efforts have dealt with this by either (1) 

splitting the area up into many small parts and running multiple classification models 

[20], or (2) including environmental covariates that help the model explain the regional 

variation in land cover characteristics [15,40]. We tested the latter approach (Q4 in Figure 

2) by including a range of environmental auxiliary covariates into our classification model. 

Auxiliary variables included elevation data from the Shuttle Radar Topography Mis-

sion (SRTM) digital elevation dataset [41] at 30 m resolution which covers up to 60° north. 

For higher latitudes, we used the 30 arc-second elevation data from the United States Ge-

ological Survey (GTOPO30). Climate data were derived from the ERA5 fifth generation 
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ECMWF atmospheric reanalysis of the global climate [42]. We used it to calculate the 10-

year (2010–present) average and standard deviation in monthly precipitation and temper-

ature at 25 km resolution. Finally, we also included data on night-time light sources at 

approx. 500 m spatial resolution. This was intended to assist the model in differentiating 

artificial surfaces and bare ground in alpine areas. A median 2018 radiance composite im-

age from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB), 

provided by the Earth Observation Group, Payne Institute, was used [43]. 

2.5. Classification Models and Accuracy Assessment 

The land cover classification model evaluation and tuning were conducted in R with 

the ‘randomForest’ and ‘caret’ packages (R Core Team, 2019), while the final model infer-

ence over Europe was conducted in Google Earth Engine using equivalent model param-

eters. We chose an ensemble learning method, namely the random forest (RF) classifica-

tion model. RF deals well with large and noisy input data, accounts for non-linear rela-

tionships between explanatory and response variables, and is robust against overfitting 

[44]. A recent review of land cover classification literature found that the RF algorithm has 

the highest accuracy level in comparison with the other classifiers adopted [45]. Classifi-

cation accuracies were determined using internal randomised cross-validation proce-

dures where error rates are determined from the mean prediction error on each training 

sample xi, only using the trees that did not have xi in their bootstrap sample (i.e., out-of-

bag; [46]). Predicted and observed land cover classes are used to build a confusion matrix 

from which one derives overall accuracy (OA), user’s accuracy (UA), and producer’s ac-

curacy (PA). See Stehman and Foody [47] for details. 

A series of RF models were run at each step in the pre-processing tests (Figure 2) in 

order to assess the effect of pre-processing decisions on classification accuracy. With each 

consecutive step, we chose the pre-processing option that yielded the highest accuracy to 

generate the data for the subsequent step. The final pre-processing sequence that led to 

the final RF model data were indicated by the underlined decisions in Figure 2. When 

testing the effect of reference sample size (Q6 in Figure 2), we iteratively removed 5% of 

the training dataset and assessed model performance. All 71,485 LUCAS locations (poly-

gon centroids and theoretical points) were used to train the final RF model. At this stage 

we performed recursive feature elimination which is a process akin to backward stepwise 

regression that prevents overfitting and reduces unnecessary computational load [48]. Re-

cursive feature elimination produces a model with the maximum number of features and 

iteratively removes the weaker variables until a specified number of features is reached. 

In our case, this was 15 features. The top predictor variables were selected based on the 

variable importance ranking using both the mean decrease in accuracy and mean decrease 

in Gini coefficient scores [49]. Finally, we also tuned the RF hyperparameters by iterating 

over a series of ntree (50 to 500 in 25 tree intervals) and mtry (1 to 10) and found the optimal 

(based on lowest model error rate) combination of settings to include a ntree of 100 and 

mtry set to the square root of the number of covariates (3.8). 

Part of enhancing the usability of land cover maps is quantifying the spatial distribu-

tion of classification uncertainty. There are methods to derive pixel-based and sample-

based uncertainty estimates that are spatially explicit [37,50,51]. We adopted a sample-

based uncertainty estimate by dividing the study area into 100 km equal-area grid squares 

defined by the European Environmental Agency reference grid. For each grid cell, we use 

our final trained RF model to make predictions against the LUCAS reference data within 

and build a confusion matrix to derive overall accuracy for the grid cell in question. We 

acknowledge that making predictions over reference samples that were included in model 

training is likely to inflate accuracy estimates. However, in this case, we are interested in 

obtaining the relative distribution of accuracy over the study region to give insight into 

class non-separability and map reliability over space. 

2.6. Comparison With Other Land Cover Maps 
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We compared our land cover product with two other global land cover products in-

cluding CORINE [12], and FROM-GLC10 [23], and two other European land cover maps 

including the map created by Pflugmacher et al. [15] and S2GLC [14]. The CORINE map 

was updated for 2018 at 100 m resolution by the Copernicus Land Management Service 

and is widely used for aerial statistics and accounting. FROM-GLC10 is a global map pro-

duced with Sentinel satellite data at 10 m resolution. The S2GLC (Sentinel-2 Global Land 

Cover) map has been produced over Europe during 2017 using Sentinel 2 data at 10 m 

resolution. The Pflugmacher et al. [15] map was produced for 2015 using Landsat data at 

30 m resolution. All land cover typologies were converted to the LUCAS typology used 

in our analysis for purposes of comparison (Table S1). The same accuracy assessment pro-

tocols described above were used to assess the accuracy of these maps using the same 

validation dataset (completely withheld from the training of our model). 

Apart from assessing the classification accuracy, we tested the utility of the maps for 

calculating aerial land cover statistics over spatial units defined for the European Union 

by the nomenclature of territorial units (NUTS). We used NUTS level 2 basic regions 

which include population sizes between 0.8 and 3 million and are used for the application 

of regional policies. Area proportions for each land cover class and map product, includ-

ing ELC10, were calculated for each of the NUTS polygons. Within each NUTS polygon, 

we also calculated the area proportions using the original LUCAS survey dataset. We re-

gressed the mapped area proportions on the area proportions estimated from the LUCAS 

sample to assess the land cover map’s utility for land cover accounting. Although the sta-

tistics derived from LUCAS dataset also have uncertainty associated with them, they are 

considered the only harmonised dataset for area statistics in Europe and were therefore 

used as the benchmark with which we compared the land cover maps. 

3. Results 

3.1. Effects of Satellite Data Pre-Processing 

The pre-processing of Sentinel optical and radar imagery had very little effect on the 

overall classification accuracy (Figure 3a,b). Specifically, the atmospheric correction of 

Sentinel-2 and speckle filtering of Sentinel-1 imagery enhanced the classification accuracy 

by less than 1% compared to models with TOA and non-speckle filtered imagery, respec-

tively. This marginal difference was true for all class-specific accuracies (Figure S2). How-

ever, the fusion of Sentinel-1 and Sentinel-2 data within a single model increased accuracy 

by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone (Figure 3c). 

Class-specific accuracies reveal that models with Sentinel-1 data alone perform particu-

larly badly when predicting wetland, shrubland and bare land classes (Figure S2c). In 

these instances, fusing both optical and radar data increases accuracy by up to 30% com-

pared to Sentinel-1 data alone. The addition of auxiliary data (terrain, climate and night-

time lights) increased accuracy by an additional 2% compared to a model with Sentinel 

data alone (Figure 3d). Auxiliary data have the largest benefits for bare land and shrub-

land classes (Figure S2d). 
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Figure 3. The effect of pre-processing decisions on land cover classification accuracy. The random 

forest model overall accuracies are displayed for alternative Sentinel 2 (A), and 1 (B) pre-pro-

cessing steps, Sentinel 1 and 2 data fusion options (C), the addition of auxiliary variables (D), and 

the quality of reference data (E). Each panel corresponds to a pre-processing decision in the work-

flow outlined in Figure 2. The option with the highest accuracy is utilised in the proceeding step. 

3.2. Effects of Reference Data Pre-Processing 

The first test of reference data pre-processing was a test of quality checking and clean-

ing the LUCAS data via the conversion of LUCAS points into homogenous polygons un-

der the Copernicus module (Figure 2). Extracting the satellite data at LUCAS points vs. 

the centroids of homogenous LUCAS polygons increased accuracy by less than 1% (Figure 

3e). This marginal effect was evident for all class-specific accuracy scores (Figure S2e). The 

second test related to reference data involved the iterative depletion of the sample size. 

The relationship between sample size and overall accuracy appears to follow an exponen-

tial plateau curve (Figure 4). The benefit to model accuracy gained by increasing sample 

size depletes so rapidly that, for example, when one increases from 5K to 20K points, ac-

curacy increases by 0.15% per 1K points added, while when one increases from 55K to 

70K points, accuracy increases by 0.015% per 1K points. Therefore, the difference between 

5K and 50K LUCAS points is only 3% (86 vs. 89%; Figure 4). The same pattern is evident 

for class-specific accuracies. However, it is important to note that the variance in accuracy 
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from the bootstrapped RF classifications increased as the number of training samples de-

creased. 

 

Figure 4. The effect of the reference sample size on overall and class-specific accuracy. The random 

forest classification models were trained on iteratively smaller sample sizes. Points in each facet 

plot represent bootstrapped (n = 10) model accuracy estimates and are fit with Loess regression 

lines. 

3.3. ELC10 Final Accuracy Assessment 

The final RF classification model produced an overall accuracy of 90.2% across eight 

land cover classes (Table 2). The class-specific user’s accuracy (UA; errors of commission) 

describes the reliability of the map and informs the user of how well the map represents 

what is really on the ground. UA exhibited a wide range from 75% for shrubland to 96.4% 

for woodland. The relative decrease in prediction accuracy over shrubland classes is evi-

dent in the spatial distribution of model errors (Figure 5). The majority of the error (accu-

racies below 80%) was distributed over southern Europe where shrubland dominates 
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(Figure 1a). Conversely, model accuracies were highest (above 90%) over the interior of 

Europe (Figure 5) where cropland and woodland dominate (Figure 1a). Shrubland was 

most often confused with grassland and woodland probably due to the spectral similarity 

across a gradient of woody plant cover. Similarly, cropland was most often confused with 

grassland probably due to the temporal similarity in spectral signatures between mowed 

pastures and ploughed fields. 

Table 2. Estimated error matrix for the final classification with estimates for user’s accuracy (UA) and producer’s accuracy 

(PA). Overall accuracy is 90.2%. 

   Reference                  

 Prediction 1 2 3 4 5 6 7 8 Total UA (%) SE 

1 Artificial land 2339 57 8 22 3 0 0 4 2433 96.1 0.4 

2 Bare land 15 1219 5 43 54 19 7 17 1379 88.4 0.8 

3 Cropland 13 124 16,251 931 190 0 11 172 17,692 91.9 0.2 

4 Grassland 19 118 1171 13,378 499 5 62 442 15,694 85.2 0.3 

5 Shrubland 6 120 207 255 3002 0 5 404 3999 75.1 0.7 

6 Water 0 20 1 5 0 1110 15 2 1153 96.3 0.5 

7 Wetland 0 48 11 28 24 2 2379 59 2551 93.3 0.5 

8 Woodland 6 126 280 502 719 2 23 23,288 24,946 93.4 0.2 

 Total 2398 1832 17,934 15,164 4491 1138 2502 24,388 69,847     
 PA (%) 97.5 66.5 90.6 88.2 66.8 97.5 95.1 95.5  90.2  

 SE 0.9 0.6 0.2 0.3 0.7 0.3 0.7 0.1   0.1 
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Figure 5. Map showing land cover classification accuracy over 100 × 100 km grid squares. The in-

set bar plot shows the abundance of grid squares across the range of error (percentage overall ac-

curacy). Missing grid cells are where there were insufficient validation samples to construct an 

error matrix. 

Sentinel optical variables were the two most important covariates in the final RF 

model (Figure 6). The first and fifth most important variables were the 25th percentile of 

NDVI and standard deviation in NBR over time, respectively. These metrics both capture 

the temporal dynamics of spectral responses that are important in distinguishing land 

cover classes such as cropland and grassland. The Sentinel 1 VH band also exhibited a 

relatively high importance score. Of the auxiliary variables, night-time light intensity and 

temperature were the most important variables. 

 

Figure 6. Variable importance plot showing the relative contribution of the top 15 most influential 

predictor variables. 

3.4. ELC10 Compared to Existing Maps 

ELC10 produced by the final RF model compared favourably relative to two global 

and two European land cover products (Figure 7). The overall accuracy for the ELC10 

map was 18% higher than the lower resolution CORINE map, and 17% higher than the 

global 10 m FROM-GLC10 map. In comparison to the European-specific products, our 

map produced a 5% greater overall accuracy. Specifically, ELC10 was 7% more accurate 

than S2GLC and 3% more accurate than Pflugmacher et al. ELC10 displayed class-specific 

accuracies that were slightly (<1%) lower than Pflugmacher et al. for wetland, bare land 

and cropland classes (Figure 7). Otherwise, the ELC10 class-specific accuracies were 

greater than those for the other maps in all other land cover classes. Notable improve-

ments upon other maps include those for water and artificial land (Figure 7). 
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Figure 7. Class-wise user’s and overall accuracy for different European land cover products. Hori-

zontal lines and points show the accuracy achieved for each land cover map. 

In terms of the maps’ utility for area statistics, the ELC10 map produced a strong 

correlation to official LUCAS-based statistics (high R2 and low mean absolute error; Figure 

8e). Land cover class area estimates are within 4.19% of the observed value for ELC10. 

This error is marginally higher than the error from Pflugmacher et al. (0.16% higher), but 

lower than the error for the other maps. Perhaps the most significant advantage of the 

ELC10 map is only realised at the landscape scale. Figure 9 (and Figures S3–S5) illustrates 

the ability of the ELC10 map to distinguish detailed landscape elements like hedge rows 

and intra-urban green spaces which are lost in the other lower-resolution products. 
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Figure 8. Correlation of mapped land cover proportions with LUCAS accounting for the statistics 

of each European land cover product. Each datum point represents the proportion for a NUTS 

level 2 statistical unit. Coloured linear regression lines are fitted per land cover class with an over-

all regression in black. Overall regression R2, root mean square error (RMSE) and mean absolute 

error (MAE) are reported. 
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Figure 9. Example of land cover classifications at the local scale for a selected landscape in Woking (south of London, 

England). Maps are shown for the present study relative to the four comparative datasets. Please refer to Supplementary 

Figures S3–S5 for more comparative examples. 

4. Discussion 

4.1. Comparison to State of the Art 

The ELC10 map produced here has accuracy levels (90.2%) that are comparable with 

multiple city- and country-scale Sentinel-based land cover maps globally [16]. Within the 

European context, we find that ECL10 has 18% less error than the CORINE dataset which 

is widely used for research and accounting purposes. This corroborates results from oth-

ers [15,52] who have also found uncertainty and bias associated with CORINE maps. The 

primary explanation for this discrepancy in accuracy is that the CORINE minimum map-

ping unit (25 ha) is very coarse compared to Landsat- and Sentinel-based maps (e.g., 

ELC10 minimum mapping unit of 0.01 ha). The CORINE project also adopts a bottom-up 

approach of consolidating nationally produced land cover datasets into one and is there-

fore prone to inconsistencies and spatial variations in mapping error. Although CORINE 

has been effectively used to stratify the probabilistic sampling of land cover for unbiased 

area estimates [53], it may not be functional in small municipalities or for other land use 

and ecosystem models that require fine-grained spatial data. 

To address the need for fine-grained land cover data, the European Space Agency 

recently initiated the development of the S2GLC map over Europe at 10 m resolution 

(http://s2glc.cbk.waw.pl/) [14]. The ELC10 map produced here extends on the S2GLC 

work by improving the overall accuracy by 7% and adopting an open source and trans-

parent approach in a similar vein to the Landsat-based map by Pflugmacher et al. [15]. 

Unlike previous pan-European maps, our approach relies on purely satellite-based input 

data and is therefore annually updatable for the foreseeable future lifespan of Sentinel and 

VIIRS sensors (assuming accuracy levels from LUCAS 2018 survey). It is thus independent 

of national topographic mapping datasets that take considerable resources to update (e.g., 

national land resource map of Norway; [54]. ELC10 also leverages Google’s cloud com-

puting infrastructure, made freely available for research purposes through Google Earth 

Engine. We were able to train and make inference with our random forest model over 700 

TB of satellite data at a rate of 100,000 km2 per hour which equates to approx. 4 days of 



Remote Sens. 2021, 13, 2301 17 of 23 
 

 

computing time to generate the 10 m product for Europe. In this way, regional or conti-

nental scale mapping of land cover, which has typically been the domain of large trans-

national institutions, may become more democratised and independent of political 

agenda [55]. 

4.2. Potential Applications 

As satellite technology and cloud computing improve, the ability to map land cover 

at high spatial resolutions is becoming increasingly possible. This opens up a range of 

novel use-cases for land cover maps at continental scales. One example is for mapping 

small patches of green space within and outside of urban areas. Rioux et al. [56] found 

that urban green space cover and associated ecosystem services were generally underes-

timated at spatial resolutions coarser than 10 m. Similarly, green spaces constituting im-

portant habitat for biodiversity such as semi-natural grasslands are often not portrayed in 

current land cover maps. This is significant given that habitat loss is one of the main 

threats facing biodiversity, particularly pollinator species, in agricultural landscapes 

across Europe [57,58]. Quantifying and monitoring the remaining fragmented habitat is 

therefore a conservation concern at both regional and national levels [59]. This is also true 

for monitoring the corollary of habitat loss–habitat restoration initiatives. Agri-environ-

mental schemes [60] such as the establishment of stone walls, hedge rows, and strips of 

semi-natural vegetation along field margins are not detected by current land cover map-

ping initiatives. High-resolution land cover maps such as the ELC10, presented here, pro-

vide a means to monitor the status and trends of the remaining patches of semi-natural 

habitats and other small green spaces over Europe. It is also possible to extend this map-

ping workflow to areas outside of the European continent assuming there are reference 

data to calibrate the RF model. This Google Earth Engine workflow may be particularly 

beneficial in monitoring tropical ecosystems such as mangrove forests [61]. 

4.3. Limitations and Opportunities 

As with all land cover products, there are several limitations to ELC10 that are im-

portant to note in the interest of data users and future iterations of pan-European land 

cover maps. Our model produced classification errors that were greatest (accuracies be-

low 80%) in southern Europe due to the predominance of, and spectral similarity between 

shrubland and bare land classes. For future refinements of the map one could aim to par-

tition the LUCAS shrubland class into, e.g., 2-3 levels of vegetational succession. Although 

some regions (i.e., central Europe, Figure 5) and classes (i.e., woodland: 95%, Table 2) ex-

hibited much higher accuracies than southern Europe, the error rate may still be signifi-

cant, particularly in the context of monitoring land use changes. A 95% accuracy implies 

that a land cover class would have to change by 10% within a spatial unit (e.g., country or 

municipality) from year to year in order for a map like ELC10 to detect it with statistical 

confidence. 

A major source of error in land cover models is the reference data. The LUCAS da-

taset is vulnerable to geolocation errors due to GPS malfunctioning in the field, interpre-

tation errors and land cover ambiguities. For instance, the European Environment Agency 

found that a post-screening of the LUCAS dataset increased CORINE-2000 accuracy by 

6.4 percentage points [62]. In addition to mislabelled LUCAS points, intersecting Sentinel 

pixels may contain mixed land cover classes and therefore introduce noise into the spec-

tral signal [25]. This is why the LUCAS Copernicus Module was initiated to produce qual-

ity-assured homogeneous polygons for integration with earth observation. However, here 

we found that intersecting Sentinel pixels with LUCAS polygon centroids did not signifi-

cantly improve classification accuracy relative to the raw theoretical LUCAS point loca-

tions alone (Figure 3e). This finding supports the well-established characteristic of ran-

dom forest models which makes them robust against noisy training data [63]. It remains 

to be seen whether utilising all pixels within LUCAS polygons increases accuracy further. 
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Users of ELC10 should also be aware that our classification model is extrapolating 

into areas without any reference data in countries including Norway, Switzerland, Liech-

tenstein, and the non-EU Balkan states. However, because the LUCAS data cover a broad 

range of environmental conditions, it is reasonable to assume similar accuracies for neigh-

bouring countries, although this needs to be tested. The efficacy of integrating ground 

reference samples with remote sensing may be illustrative for Norway and other countries 

and stimulate future open-access land cover surveys. The fact that we found accuracies 

>85% with <5K reference points (Figure 4) should act as encouragement because it shows 

that land cover mapping with earth observation does not necessarily require large re-

sources dedicated to reference data collection. However, the variance in classification ac-

curacy increases substantially with a reduction in reference sample size, and therefore, 

this might limit the ability to make accurate models at both the national and continental 

scale. Alternatives to in situ sampling include less resource-intensive methods, commonly 

adopted in the deforestation monitoring community, such as visual interpretation of very 

high resolution satellite or aerial imagery in platforms like Collect Earth Online [64]. 

There remain several avenues for improving upon ELC10 and Sentinel-based land 

cover mapping which may strengthen its utility for research and policy purposes. The 

harmonisation of Landsat and Sentinel time series [65] may enhance the benefit gained 

from spectro-temporal features. This may be particularly beneficial in areas with high 

cloud cover, which creates gaps in the Sentinel-2 time series and consequent noise in the 

spectro-temporal features. The use of repeat-pass SAR interferometry may also enhance 

accuracy [66] beyond that achieved here because we were limited to using Sentinel-1 

Ground Range Detected data, that are analysis-ready in Google Earth Engine. In this par-

ticular case, Google Earth Engine is limited and one might explore other cloud computing 

platforms such as Sentinel Hub, Open Data Cube, Copernicus DIAS, the European Open 

Science Cloud, or custom set-ups in Microsoft Azure or Amazon Web Services [67]. Other 

cloud computing platforms may also offer a suite of other machine learning algorithms 

under the deep learning umbrella, such as neural networks, which may produce greater 

accuracies than classification tree approaches like RF [68]. Recently, Google Earth Engine 

has developed an integration with the machine learning platform TensorFlow which al-

lows for the application of deep learning algorithms to land cover classification (e.g., 

[69,70]). 

Finally, research on mapping uncertainty is an ongoing need. This is particularly true 

for quantifying uncertainty associated with land cover change statistics [71] derived from 

Sentinel land cover maps. Land cover change from Sentinel data may be assessed with the 

next iteration of LUCAS in 2022, or with the harmonised historical data provided by d’An-

drimont et al. [24]. Quantifying uncertainty is necessary for such maps to be included into 

governmental and municipal accounting frameworks that ultimately contribute to ad-

dressing the global SDGs. Khatami et al. [37] reviewed a range of methods to derive pixel-

level estimates of uncertainty, many of which rely on producing a posteriori class proba-

bilities obtained from the random forest classifier. Class probabilities may also be used to 

perform post-processing steps that remove artifacts and the salt-and-pepper effects of 

pixel-based classification, such as in Malinowski et al. [14]. 

4.4. Recommendations 

We attempted to maintain transparency in the data pre-processing decisions we 

made by presenting the effects on model accuracy at each step (Figure 2). Although our 

findings are not necessarily generalizable to areas outside of Europe, they are useful 

guidelines for others to learn from. Based on our experience, we recommend the following 

for future Sentinel-based land cover mapping at the continental scale: 

 The atmospheric correction of Sentinel-2 optical has marginal effects on classification 

accuracy and therefore may be skipped. This is supported by other studies (Rumora 

et al., 2020) and is particularly relevant when users are interested in near-real time 
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land cover classification because Top of Atmosphere products are generally made 

available before surface reflectance products. 

 Applying a speckle filter to Sentinel-1 imagery has marginal effects on classification 

accuracy and therefore may be skipped. As far as we are aware, there are no other 

studies that have tested this effect. Applying speckle filtering is computationally in-

tensive and therefore excludes its benefit of fast and on-the-fly land cover classifica-

tions where desirable. However, we acknowledge that we only used a single median 

and standard deviation per band and orbit mode for a full year of data. Speckle fil-

tering may be more effective if one derives seasonal or monthly composites as inputs 

into the classifier, as we did with Sentinel-2 NDVI. 

 The fusion of Sentinel-1 and Sentinel-2 data has large increases in classification accu-

racy (3–10%) and is therefore encouraged. The addition of auxiliary variables that 

capture large-scale environmental gradients important for distinguishing spectrally 

similar classes (e.g., shrubland and forest) also improve classification accuracies and 

should be included. However, users should be cautious of spatial overfitting to these 

auxiliary variables which may cause geographical biases due to spatial autocorrela-

tions [72,73]. 

 Cleaning reference samples through initiatives like the LUCAS Copernicus Module 

may not be worth the marginal gains in classification accuracy. RF models are robust 

against noisy training data [63] and therefore, so long as a clean validation sample is 

maintained, filtering noise in training data may not be necessary. Nevertheless, clean 

reference data supplied by the Copernicus Module is invaluable to deriving realistic 

accuracy estimates. We supplemented the Copernicus Module polygons with LU-

CAS points (n = 18,009) in order to balance class representativity in the training sam-

ple. We did this using an outlier removal procedure which may have artificially in-

flated our final accuracy estimates. Therefore, we recommend that initiatives like the 

Copernicus Module ensure that their sample is representative of the class area pro-

portions in the study area, so that augmenting the training sample is not necessary 

for earth observation applications in the future. 

 Collecting tens of thousands of reference data points may also not be necessary de-

pending on the desired classification accuracy. We found that accuracies above 85% 

are achievable with less than 5000 LUCAS points, albeit for an eight-class classifica-

tion typology. 

 Cloud computing infrastructure like Google Earth Engine make ideal platforms 

given that we could produce a pan-European map within approx. 4 days of compu-

tation time from a single research user account. 

5. Conclusion 

The recent proliferation of freely available satellite data in combination with ad-

vances in machine learning and cloud computing has heralded a new age for land cover 

classification. What has previously been the domain of transnational institutions, such as 

the European Space Agency, is now open to individual researchers and members of the 

public. We present ELC10 as an open source and reproducible land cover classification 

workflow that adheres to open science principles and democratises large scale land cover 

monitoring. We find that combining Sentinel-2 and Sentinel-1 data is more important for 

classification accuracy than the atmospheric correction and speckle filtering pre-pro-

cessing steps individually. We also confirm the findings of others that the random forest 

is robust against noisy training data, and that investing resources in collecting tens of 

thousands of ground-truth points may not be worth the gains in accuracy. Despite the 

effects of data pre-processing, ELC10 has unique potential for quantifying and monitoring 

detailed landscape elements important to climate mitigation and biodiversity conserva-
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tion such as urban green infrastructure and semi-natural grasslands. Looking to the fu-

ture, maps like ELC10 can be annually updated, and repeated in situ surveys like LUCAS 

can be used for quantifying uncertainty and accuracy in area change estimates. Quantify-

ing uncertainty is crucial for earth observation products to be taken seriously by policy 

makers and land use planners. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/rs13122301/s1, Figure S1: Distribution of LUCAS reference points used in the final ELC10 

model (n = 71 485) across land cover classes. LUCAS polygons were supplemented with LUCAS 

points so that the samples sizes were proportional to the CORINE land cover proportions over Eu-

rope., Figure S2: The effect of pre-processing decisions on land cover classification accuracy per land 

cover class. Random Forest model class-specific balanced accuracies are displayed for alternative 

Sentinel 2 (A), and 1 (B) pre-processing steps, Sentinel 1 and 2 data fusion options (C), the addition 

of auxiliary variables (D), and the quality of reference data (E). Figure S3: Example of land cover 

classifications at the local scale for a selected landscape in Ozford, England. Maps are shown for the 

present study relative to the four comparative datasets. Figure S4: Example of land cover classifica-

tions at the local scale for a selected landscape east of Barcelona, Spain. Maps are shown for the 

present study relative to the four comparative datasets. Figure S5: Example of land cover classifica-

tions at the local scale for a selected landscape south of Tarcento, Italy. Maps are shown for the 

present study relative to the four comparative datasets. Table S1: Land cover maps used for com-

parison with ELC10 were relassified into the ELC10 (based on LUCAS high level typology) typol-

ogy. The lookup tables to show reclassifications are presented below. 
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