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Redefining the oceanic distribution 
of Atlantic salmon
Audun H. Rikardsen1,3*, David Righton2, John Fredrik Strøm1, Eva B. Thorstad1,3, 
Patrick Gargan4, Timothy Sheehan5, Finn Økland3, Cedar M. Chittenden1, Richard D. Hedger3, 
Tor F. Næsje3, Mark Renkawitz5, Johannes Sturlaugsson6, Pablo Caballero7, Henrik Baktoft8, 
Jan G. Davidsen9, Elina Halttunen1, Serena Wright2, Bengt Finstad10 & Kim Aarestrup8

Determining the mechanisms driving range-wide reductions in Atlantic salmon marine survival is 
hindered by an insufficient understanding of their oceanic ecology and distribution. We attached 
204 pop-up satellite archival tags to post-spawned salmon when they migrated to the ocean from 
seven European areas and maiden North American salmon captured at sea at West Greenland. 
Individuals migrated further north and east than previously reported and displayed increased diving 
activity near oceanographic fronts, emphasizing the importance of these regions as feeding areas. 
The oceanic distribution differed among individuals and populations, but overlapped more between 
geographically proximate than distant populations. Dissimilarities in distribution likely contribute to 
variation in growth and survival within and among populations due to spatio-temporal differences in 
environmental conditions. Climate-induced changes in oceanographic conditions will alter the location 
of frontal areas and may have stock-specific effects on Atlantic salmon population dynamics, likely 
having the largest impacts on southern populations.

Temperatures have increased in the north Atlantic and Pacific oceans over the last few decades, causing large-
scale oceanographic changes1,2 and northward distributional shifts of many species3,4. Diadromous Atlantic 
salmon (Salmo salar) and Pacific salmon (Oncorhynchus spp.) spawn and spend the juvenile phase in rivers 
and perform long-distance ocean feeding migrations5,6. It has been suggested that many of these species have 
expanded their marine feeding areas northwards7,8, resulting in longer migration distances to foraging areas.

In Europe and North America, the abundance of Atlantic salmon has generally declined since the 1970s9,10. 
One of the major hypotheses for the decline is reduced marine survival9,10. This has increased interest in the 
spatio-temporal ocean distribution of Atlantic salmon11,12 and the impacts of the ocean environment on indi-
vidual growth and survival13,14. However, the causal links between ocean processes and survival remain elusive. 
A key element in identifying and evaluating factors that contribute to reduced survival is knowledge of migration 
routes, migration timing and feeding areas. With knowledge of the oceanic distribution of salmon from different 
regions, the causative mechanisms underlying the variation in growth and productivity can be better understood.

The Atlantic salmon is one of the world’s most studied fish, but detailed knowledge of its ocean distribution 
and behaviour is limited. Traditionally, information on the ocean migration originated from sampling and 
conventional tagging surveys based on mark and recapture methods15,16. More recently, genetic studies have 
disentangled novel aspects of the species’ ocean migration and distribution17–19. These previous studies have 
been spatially limited by primarily sampling from fisheries and surveys at the Faroes, Greenland and in the 
Norwegian Sea20 rather than over more widespread regions that Atlantic salmon are believed to use. They have 
also provided little information on detailed migration routes and behaviour.

The development of electronic tracking technologies has opened new possibilities to collect detailed spa-
tially unbiased information on fish migrations and individual behaviour over large ocean areas21,22. For Atlantic 
salmon, the use of archival tags has expanded our knowledge of where they feed in the ocean12,23–26 and provided 
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detailed data on individuals’ depth and temperature use27–29. However, archival tags have typically been used 
in studies of single populations, or in limited geographical areas, and included a low number of individuals.

To increase our understanding of the ocean distribution of Atlantic salmon, and to study variation in distri-
bution between and within populations, we performed a large-scale study using pop-up satellite archival tags 
(PSATs) spanning populations from the southernmost to the northernmost part of the species’ distribution range. 
The study included post-spawned salmon from seven areas in Europe (from 42° N in Spain to 70° N in northern 
Norway) that were tagged as they were leaving the river and returning to the sea, and maiden North American 
salmon captured at sea at Western Greenland. The tags archived environmental data until detachment when 
they reported their location and transferred stored data to satellites. Our aims were to (1) map the horizontal 
ocean migration patterns of individual Atlantic salmon, (2) examine how their migration patterns were related 
to origin, travel distance, area use and diving frequency, and (3) quantify the overlap in feeding areas of salmon 
from the different regions.

Results
From the 204 tagged fish, data were obtained from the PSATs of 148 Atlantic salmon, of which 105 provided 
enough data for estimating complete migration paths while the remainder provided pop-up locations indicat-
ing the approximate position of the animals on the date the tag released. The migration tracks calculated for 
these fish showed that individuals migrated towards known oceanographic fronts, where branches of the North 
Atlantic current lie adjacent to cold polar waters, but the oceanic distribution differed among individuals and 
populations (Fig. 1). Most Norwegian and Danish salmon conducted a rapid northern or north-western migra-
tion in the North Atlantic Ocean (Fig. 1). However, salmon from northern Norway either migrated north-west 
in the northern Norwegian Sea toward Svalbard or the Greenland Sea, or north-east to the Barents Sea (Fig. 1). 
The northernmost recordings of Norwegian and Danish Atlantic salmon were from the west of Svalbard at 
latitudes of nearly 80° N. In contrast, Irish, Spanish and Icelandic salmon primarily migrated westward towards 
East Greenland (Fig. 1). Maiden North American salmon (genetically assigned) tagged at Western Greenland 
migrated south into the Labrador Sea during fall and winter.

Most salmon rapidly migrated towards the oceanographic fronts (Fig. 1). Within each population, individuals 
commonly migrated in similar directions, although population-specific variation was noted (Fig. 1). Individuals 
covered distances of up to 2940 km from the release site, measured as a straight-line distance from the tagging site 
to the pop-up position (an individual from River Lerez in Spain with the longest migration), with fish released 
further south travelling the longest distances (Table 1; Fig. 1). For the populations with multiple years of tagging 
(i.e., salmon from 2 years in Denmark and 3 years in Northwest Norway, Table 1), the migration routes showed 
similar patterns between or among the years (Fig. 2).

Tagged salmon were predominately surface oriented, spending 80% of the time at depths less than 10 m, 
with occasional dives to greater depths (population-specific maximum depths from 220 to 870 m, Table 1). The 
frequency of dives to depths greater than 10 m increased for the southernmost populations during their post-
migration period (i.e., when they had reached the most distant areas from their home river) (Fig. 3). For the 
north-Norwegian populations this pattern was less clear, and the salmon initiated frequent diving soon after 
they had entered the open ocean.

The overlap in the area use during the ocean migration varied substantially among the different populations, 
with greater overlap in ocean distribution between geographically proximate than distant populations (Fig. 4; 
Table 2). Populations from Denmark and Norway had the greatest overlap in distribution areas, with the north-
east Norwegian population being the exception, with no overlap with Danish populations. Also, the populations 
from Spain and Ireland had a relatively large overlap in their distribution area. The Spanish and Irish fish did not 
overlap in distribution with Norwegian fish, and only to a small extent with Danish fish. The North American 
fish tagged at Greenland only overlapped to a small extent with the Irish fish (Fig. 4; Table 2). Temporal area use 
is not considered here, and the extent of overlap in area use among populations may be smaller if considering 
the time of the season different populations spend in different areas.

Thermal experience of fish from the different populations (Fig. 5) reflected the composition of the water 
masses encountered from the start of their migration and towards or along the polar front areas. Salmon from 
Denmark and Norway occupied cool northern Atlantic and/or Barents Sea water (daily averages from 0 to 11 °C 
depending on time of year). In contrast, salmon from the Irish, Spanish and Icelandic populations exploited 
generally warmer waters (5–16 °C) towards the areas south of Greenland in the western branch of the North 
Atlantic current. Maiden North American salmon tagged at Greenland occupied cool water (0–7 °C) in the 
West Greenland current and within the same range as the Norwegian populations during the same autumn 
and winter months (Fig. 5). The coldest winter temperatures experienced was by the north-western Norwegian 
population (average around 2 °C during February–April). However, this population and the salmon tagged at 
West Greenland were the only fish with data from this period.

Discussion
Our study extends the known geographic area used by salmon during their migration in the North Atlantic 
Ocean and Barents Sea as reported by earlier studies based on conventional tagging and sampling surveys15,16,20. 
An extended use of the North Atlantic Ocean and Barents Sea was also suggested in recent studies using archival 
tags12,23–26,28, but these studies have concentrated on single populations or been restricted by low sample sizes. 
The present study indicated that multiple individuals from the Norwegian and Danish populations survived to 
migrate northward from their home river and reached latitudes as high as 80° N. This is to our knowledge the 
furthest north any Atlantic salmon has ever been recorded, extending previously assumed northern limits8,30. 
These results confirm that the foraging areas of Atlantic salmon currently extend to more northerly latitudes than 
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previously thought. For populations in Denmark and Norway, the marine distribution is probably limited by the 
northern boundary of Atlantic currents. In contrast, the populations from Iceland, Ireland and Spain did not 
travel as far north, but instead crossed the main North Atlantic current and migrated towards southern Green-
land, indicating a difference in ocean distribution for these populations. The less directed migration displayed 
by most of the North American salmon tagged at Greenland was likely due to these fish already being present at 
their assumed main ocean feeding grounds at the west coast of Greenland15 when tagged.

Figure 1.   Migrations of Atlantic salmon tagged in eight different geographic areas. Release locations post-
tagging are shown by squares (from 11 northeast Atlantic river catchments and at-sea at Western Greenland). 
(A) Estimated daily geographic location of 105 salmon (circles) from the release location. Crosses show the 
pop-up location of the tags of these salmon, as well as those for an additional 43 salmon for which detailed 
movement reconstructions were not possible. The dashed line shows the 500 m depth contour, while darker blue 
shading indicates increasing depth as per the GEBCO bathymetry44. (B) Example migrations of individual fish 
from each catchment and arrows showing main ocean current systems of warm (light brown arrows) and cold 
(blue arrows) water in the North Atlantic Ocean. (C) The weekly mean distance from the release location for 
salmon from each tagging group (circles, estimated as distance along a straight line from the release location). 
Fitted lines show the regression (significant for all groups) between week of the year and distance for the 
first 11 weeks after release only, corresponding to the time required to reach principal feeding areas for most 
populations (regression lines were extended as dashed lines past the first 11 weeks for display purposes only). 
Iceland was not included in (C) due to our small sample size of fish from this area. Maps were drawn using ESRI 
ArcGIS Desktop v10.5.
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Despite the fact that salmon from different areas used different migration routes and ocean areas, they 
consistently migrated to and aggregated in assumed highly productive areas at the boundaries between large-
scale frontal water masses where branches of the North Atlantic current lie adjacent to cold polar waters31. In 
these areas, previous analyses demonstrated frequent diving activity by tagged individuals28. The duration and 
diving profile of these dives suggested foraging behaviour, rather than predator escape, because the dives were 
U-shaped, typically lasted a few hours, and diving depths were related to the depth of the mixed layer during 
the different seasons28. Thus, the increased diving frequency is most likely an indication of increased feeding 
activity, emphasizing the importance of these productive regions as feeding areas for Atlantic salmon. In contrast 
to Atlantic salmon from the other areas, the two northernmost populations displayed a high diving frequency 
close to the shore immediately after sea entrance, as also shown by Hedger et al.28. These rivers are located closer 
to the frontal water masses, and these fish may have started extensive feeding earlier in their sea migration. This 
assumption is further supported by a study of Norwegian post-smolts, where the northernmost populations were 
feeding more extensively just after leaving their rivers than fish from southern populations32. Thus, the northern 
populations may benefit from a shorter migration route to the main feeding areas for salmon. However, given 
that many kelts are in poor condition when they enter the sea, it is likely that tagged fish from all populations 
were feeding pelagically in the first weeks at sea during the transit away from the coast when prey were available.

Migration from the rivers to the assumed foraging areas (i.e., the most distant areas they migrated to) was 
fast and direct for individuals from southern populations, while salmon from the northern Norway did not dis-
play similar direct migration routes. Our results are similar to those reported by an earlier study26 on the same 
North-Western Norwegian population as in the present study, and are likely related to the greater proximity to 
ocean frontal areas and rich food resources.

The results in the present study may have been influenced by the relatively large size of the tag compared to 
the size of the fish. Hedger et al.33 assessed tagging effects of PSATs on post-spawned Atlantic salmon by com-
paring their behaviour with salmon tagged with much smaller archival tags. They found that the overall depth 
distribution, ocean migration routes based on temperature recordings and return rates did not differ between 
salmon tagged with PSATs and smaller archival tags and concluded that PSATs are suitable for use in researching 
large-scale migratory behaviour of adult salmon at sea. However, salmon with PSATs dived less frequently and to 
slightly shallower depths33. Based on this, we believe the conclusions of the present study are valid despite poten-
tial tagging effects, but the diving depths and frequencies might be underestimated compared to non-tagged fish.

Table 1.   Overview of tagged post-spawned Atlantic salmon from eleven rivers in eight geographic areas in 
the north-east Atlantic and maiden salmon captured off Greenland. The number of fish tagged, tagging dates 
and fish body size is given for each river/location each year. The number of fish with tags providing data, the 
total number of days recording data, mean % of the data retrieved from the tags, mean distance migrated as a 
straight line from the river to the pop up location, and the maximum recorded swim depth of the fish are also 
given. NW north-western, NE north-eastern, SD standard deviation.

Location 
(area) River

Year of 
tag-ging

Number of 
fish tagged

Dates of 
releasing 
tagged fish

Mean body 
length, cm 
(SD)

Mean 
body 
mass, kg 
(SD)

Number 
of fish 
with tags 
providing 
data

Number 
of days 
recorded

Mean % 
of data 
retrieved 
(SD)

Distance 
migrated, km, 
mean (SD, 
maximum)

Max 
recorded 
depth, m

NW Norway Alta

2008 10 22 May 102 (7.2) 8.1 (1.6) 8 748 83 (34) 463 (232, 846) 459

2009 20 29 May 98 (4.5) 7.0 (1.0) 17 2437 57 (29) 632 (297, 1108) 659

2010 22 24–27 May 99 (5.6) 7.1 (1.0) 21 3752 49 (36) 686 (457, 2068) 634

NE Norway Neiden
2009 10 31 May 96 (5.6) 6.2 (1.6) 10 1391 56 (24) 344 (241, 778) 397

2010 7 30 May 83 (7.1) 4.0 (1.1) 5 334 48 (41) 144 (155, 348) 220

Mid Norway Orkla 2010 20 5–6 May 98 (8.0) 6.7 (1.6) 10 1491 70 (18) 1039 (456, 1720) 644

Denmark

Skjern
2011 12 31 March 89 (8.2) 4.5 (1.4) 8 1186 55 (24) 1781 (846, 2603) 585

2012 12 1 April 84 (3.7) 3.6 (0.5) 10 464 73 (18) 878 (618, 1988) 312

Varde
2013 10 2 April 83 (3.6) 3.6 (0.7) 7 502 57 (40) 1396 (930, 2064) 468

2014 10 3 April 82 (5.8) 3.3 (0.8) 7 414 66 (25) 997 (928, 2018) 247

Ireland
Blackwater, Suir 2010 17 11–25 March 74 (6.2) 3.0 (0.6) 10 502 90 (11) 796 (856, 2391) 870

Suir, Nore, Barrow 2011 10 11–18 March 71 (5.2) 2.8 (0.6) 9 546 84 (23) 709 (717, 1978) 639

Iceland Laxa 2010 6 4 May 79 (2.9) 2.9 (0.5) 2 99 95 (8) 940 (559, 1335) 505

Spain Lérez
2013 7 14 March 74 (2.8) 2.8 (0.6) 6 550 87 (11) 963 (1104, 2971) 560

2014 7 18 March 84 (6.3) 4.0 (1.1) 5 91 91 (10) 450 (483, 1277) 430

Greenland NA (in sea)
2010 7 13–15 Sept 66 (2.3) 3.7 (0.5) 4 254 86 (23) 331 (327, 804) 768

2011 17 14–27 Sept 66 (2.7) 3.5 (0.3) 9 312 93 (19) 279 (380, 1259) 672

Total 204 148 69 25,954
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Figure 2.   Migration tracks by month of individual Atlantic salmon tagged in seven geographic areas. Each 
panel shows the tracks of fish tagged in one geographic area (indicated by the color of the land masses in each 
map, corresponding to color codes in Fig. 1). Because of the large number of individuals tagged in the NW 
Norwegian population, the three uppermost panels show data from this population the three different years 
of tagging (2008–2010 left to right). Darker blue shading in the ocean indicates increasing depth as per the 
GEBCO bathymetry44. Annual data for the remaining population with multiple years of tagging is shown in 
Supplementary Figure S1. Maps were drawn using ESRI ArcGIS Desktop v10.5.
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Figure 3.   Post-migration diving behavior of Atlantic salmon in relation to the polar front (as bounded by the 
0 °C and 5 °C annual mean temperature isolines). Post-migration is defined as > 11 weeks after release. Symbol 
size reflects the proportion of time spent at depths greater than 10 m. Color coding of salmon populations is 
the same as for Fig. 1A. Salmon released from Iceland and Spain provided data only from few fish and for a 
limited period, so data from these taggings are not included in the figure. Sea surface temperature contours were 
derived from mean monthly SST data 156 (NOAA_ERSST_V4) for the period of the study (January 2008 to 
December 2013). Data were provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web 
site at 158 https://​www1.​ncdc.​noaa.​gov/​pub/​data/​cmb/​ersst/​v4/​netcdf/. Maps were drawn using ESRI ArcGIS 
Desktop v10.5.

Figure 4.   Area use during the ocean migration of tagged Atlantic salmon, shown with lines and shades with 
colors representing salmon from seven different areas (same color codes as in Fig. 1, with the two populations 
from Denmark combined due to the proximity and similarity of movements for fish of these rivers). Data from 
salmon tagged in Iceland were not included due to a small sample size. The area use is based on combined 
residency distributions for all fish from each population. Temporal area use is not considered here. The more 
detailed spatial intensity information within each population distribution is shown in Supplementary Figure S2. 
Maps were drawn using ESRI ArcGIS Desktop v10.5.

https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/netcdf/


7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12266  | https://doi.org/10.1038/s41598-021-91137-y

www.nature.com/scientificreports/

Diet data from adult salmon in the ocean are limited but show that salmon feed on a variety of prey taxa. 
Typically, herring (Clupea harengus), sand eels (Ammodytes spp.), capelin (Mallotus villosus) and myctophids 
dominate as fish prey, while euphausiids and amphipods often dominate as crustacean prey34–36. Although there 
exist some data of adult herring and capelin during parts of the year, there is limited information on the spatial 
and temporal distribution of crustaceans in these ocean areas, and it is therefore difficult to relate the salmon 
diving behaviour to availability of all their main prey items. However, salmon appeared to be able to forage on 
prey far below the surface, indicated by the frequent dives, and salmon at sea have also previously been shown 
to feed on the mesopelagic community37,38. Hedger et al.28 found that the diving depth increased with the depth 
of the mixed layer and hypothesised that stratification affected the aggregation of prey and thereby the salmon 
diving behaviour. They also showed that when the stratification disappeared during the dark winter months, the 
salmon dived less but their dives were deeper. Nevertheless, the possibilities to feed at different depths28, expand 
the foraging niche of salmon compared to feeding merely near the surface.

Dadswell et al.11 published the “merry-go-round hypothesis”, which implies that both first-time migrants 
and previous spawners from all salmon populations enter the North Atlantic Subpolar Gyres and move counter 
clockwise within these gyres until returning to their natal rivers. Although the full migration from river outrun 
to return was not followed in the present study (most tags popped off half-way into the migration), and some 
individuals indicated a counter clockwise migration pattern, most of the populations and individuals in this 
study clearly did not follow the North Atlantic Subpolar Gyres during the first months at sea. Therefore, most 
of our data did not support the merry-go-round hypothesis. However, some individuals from northern Nor-
way seemed to follow the currents to a larger extent than individuals from other populations during the first 
months at sea. Previous studies on Atlantic salmon from Canada also documented that adults migrated either 
independently or against prevailing currents while at sea, indicating that the horizontal movement of adults are 
primarily governed by other factors12,24.

Due to the size limit of the pop-up-tags, we primarily tracked large post-spawned individuals that are more 
mobile than smaller first-time migrants. Although some studies have shown that first-time migrants can be found 
in the same areas as post-spawners from the same populations8,30 is not known to which extent the migration 
pattern and distribution of post-spawners represent the same migration pattern of first-time migrants. Due to a 
larger body size, it is possible that the migration of post-spawners depends to a lesser degree on ocean currents 
and gyres than do the movements of first-time migrants, especially in the first part of the migration. For example, 
we observed that the Irish and Spanish post-spawned individuals all crossed the main North Atlantic current 
towards Greenlandic waters. However, Irish and other southern European post-smolts have frequently been 
captured in the Norwegian Sea20, indicating that some of these individuals migrate and follow the main ocean 
current in a northward direction. It is possible that many of these post-smolts later migrate southwest towards 
Greenland and feed in these waters as maiden salmon before they return to rivers. This corresponds to the 
observation that it is mostly large (two sea-winter) southern European salmon (including Irish individuals) that 
are found in the southern Greenland feeding areas20. Therefore, it might be that the post-spawned salmon from 
these populations return to their primary feeding areas where they were feeding as maiden salmon from their 
first sea migration, and not necessarily to the same area as they started their feeding migration as post-smolts.

Populations differed in their ocean distribution, but the distribution also overlapped to some degree between 
or among populations, with more overlap between geographically proximate than distant populations. Some 
populations never overlapped in geographical distribution during the study. The populations from Ireland and 
Spain did not overlap with the Norwegian and Danish salmon, but there was a small spatial overlap between 
the Irish salmon and the North American salmon tagged at Greenland, although area use by these populations 
did not overlap in time. It is known that populations from North America and Europe largely use different parts 
of the North Atlantic, with more North American salmon in the western part and more European salmon in 
the eastern part of the ocean although they have been shown to mix at the feeding grounds at the Faroes and 
at Greenland12,15,16,18,20. For the Spanish population, it should be noted that tagged individuals were followed 
for a relatively short period, and a larger sample size over a longer period might have shown some overlap with 
the northern European populations, based on the initial northward direction of two individuals. At the same 
time as populations differed in their ocean distribution, there were also relatively large within-population dif-
ferences in migration routes and geographic distribution. Individual differences in migration routes and ocean 

Table 2.   Overlap in area use during the ocean migration between Atlantic salmon tagged in seven different 
areas, based on overlap in population-specific residency distributions. The values in the table represent 
Bhattacharrya’s affinity, which can be interpreted as proportion overlap (1 = total overlap, 0 = no overlap). Data 
from salmon tagged in Iceland were not included due to a small sample size.

NE Norway NW Norway M Norway Denmark Ireland Spain Greenland

NE Norway 1.0 0.5 0 0 0 0 0

NW Norway 0.5 1.0 0.38 0.29 0 0 0

M Norway 0 0.38 1.0 0.58 0 0 0

Denmark 0 0.29 0.58 1.0 0.02 0 0

Ireland 0 0 0 0.02 1.0 0.32 0.05

Spain 0 0 0 0 0.32 1.0 0

Greenland 0 0 0 0 0.05 0 1.0
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distribution of salmon from the same population, even within the same year, were also shown by Strøm et al.12,26. 
Collectively, these results imply that salmon from different populations will experience highly different ecological 
conditions, potentially contributing to between-and within-population variation in growth and survival. Since 
our data are limited by a varying number of individuals among the studied populations, and restricted mainly 
to post-spawned salmon, our results represent a minimum overlap among the populations so the actual overlap 
may be larger. Nevertheless, this strongly indicates a varying degree of geographical separation in ocean feeding 

Figure 5.   Thermal niche of tagged Atlantic salmon from different areas shown as temperature where they 
resided each month during the ocean migration. Numbers above each box show the number of individuals and 
the numbers in parentheses show the number of temperature recordings. Color codes are the same as in Fig. 1, 
with the two populations from Denmark combined due to the proximity and similarity of movements for fish of 
these rivers.
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areas. Thus, geographically close populations will to a larger extent be influenced by similar conditions in the 
ocean than more distant populations.

The study was carried out over several years, with not all sites having tagging undertaken in the same years. 
There is a possibility that geographic area use and overlap among populations may vary among years, according 
to variation in environmental conditions among years29. However, data from multiple years for some populations 
suggest consistent population specific migration routes and area use among years, indicating that the principal 
patterns are stable over time for particular salmon populations.

The differing distributions of salmon from particular populations in different oceanic regions might simply be 
a function of distance to appropriate feeding grounds from the different home rivers, with individuals from the 
different rivers mainly adapted to seek the closest feeding areas. The route selection during the migration might 
in addition be a result of each individuals’ opportunistic behaviour and which food resources and environmental 
conditions they encounter along the journey. As discussed above, the experience and learning during the first 
ocean migration might also impact individuals’ route choice and area use. Salmon from southern populations 
used more southern ocean areas, and hence stayed in warmer water, than salmon from the northern popula-
tions. We cannot rule out that salmon from different populations have different temperature preferences due to 
different thermal selection regimes in their home rivers, but similar to a previous study29, we suggest that the 
differences in thermal habitat among populations utilising different areas at sea are mainly driven by availability 
of prey fields. There is generally little support for the hypothesis that variation in salmonid growth rates reflects 
thermal adaptations to their home stream39.

Despite the variation in migration patterns among and within populations, most individuals seemed to 
migrate to distant ocean frontal areas. This suggests that climate change may have greater impact on populations 
originating further south, because the distances and time required to travel to feeding areas will increase if the 
boundary between Atlantic and Arctic waters move northward because of ocean warming. Our study has shown 
that several populations are able to migrate over large distances, but the capacity for populations to adapt to an 
increased migration distance is unknown. Given increased migration time, especially for southern populations, 
the time available for accumulating important energy reserves will likely be reduced. In addition, increased water 
temperatures in the North Atlantic may also increase the energy expenditure that the individual fish spend per 
unit of distance when migrating from their home rivers towards the feeding areas. This may affect all populations 
to some degree, and may contribute to an additional burden for Atlantic salmon populations that are already in a 
poor state. This will also add to the hypothesized negative effect of climate change in freshwater for the southern 
populations, where temperatures will have a greater likelihood of reaching to growth inhibiting levels compared 
to more northern populations39.

Taking advantage of the development of electronic tags, we have shown an extended use of the North Atlantic 
Ocean by Atlantic salmon, including the Barents Sea, which contrasts to the earlier strong focus on feeding areas 
at the Faroes, West Greenland and in the Norwegian Sea in previous studies. These results expand the knowledge 
on the marine foraging and habitat niche of Atlantic salmon, in terms of geography, migration behaviour and 
thermal niche. The existence of feeding areas at the boundaries between Atlantic and Arctic surface currents sug-
gests that salmon have a strong link to Arctic oceanic frontal systems. We have further shown that salmon from 
different populations may migrate to different ocean frontal areas in the North Atlantic Ocean and Barents Sea 
and therefore be impacted by different ecological conditions that may contribute to within-population variation 
in growth and survival. We also conclude that climate induced changes in oceanographic conditions, which will 
likely alter the location of and distance to polar frontal feeding areas, may have region-specific influences on the 
length and cost of the Atlantic feeding migrations, particularly affecting the southern populations most. As the 
polar oceans get warmer and current patterns shift, changes in the location and productivity of high latitude 
fronts will become evident. As migration distances become longer, or more variable, and the time accumulat-
ing energy is reduced, the variation in the marine survival and productivity of different populations are likely 
to become more marked. Combined, our results help to shed light on important ecological process that shape 
Atlantic salmon population dynamics within most of its distribution area.

Material and methods
Capture and handling of Atlantic salmon for tagging.  Atlantic salmon post-spawners from seven 
European areas were tagged with pop-up satellite archival tags (n = 204, Table 1). The sites included north-east-
ern Norway (River Neiden), north-western Norway (River Alta), Mid Norway (River Orkla), Denmark (River 
Skjern and Varde), Ireland (Rivers Blackwater, Suir, Nore and Barrow), Spain (River Lérez) and Iceland (River 
Laxa). In addition, maiden salmon captured and tagged at Greenland (Nuuk) were included to provide informa-
tion on Atlantic salmon in the north-western Atlantic Ocean. The Greenland fish were all of North American 
origin, as confirmed by genetic analyses40. Salmon post spawners were caught in rivers during spring by elec-
trofishing (Denmark), in a trap (Spain) or by angling (Norway, Ireland and Iceland) and placed in a net pen in 
saltwater (about 5 × 5 × 5 m) (Norway, Ireland) or in a freshwater tank close to the river mouth for 1–2 weeks 
(Denmark and Iceland). The Spanish salmon were kept in a circular freshwater tank (3 m in diameter, 1.5 m 
deep) for up to 3 months before tagging.

The largest individuals were selected for tagging due to the size of the tags. The maiden salmon at Greenland 
were captured in constantly tended gillnets (n = 19), trap nets (n = 4) or rod (n = 1). Upon capture, fish were 
transferred to a 400 l water tank on board a boat, where they were tagged and released post-recovery close to 
the capture location.

Tags, tagging and release.  The pop-up satellite archival tags (PSAT model X-tag, size 120 × 32 mm plus 
185 mm long antenna, 40 g in air, Microwave Telemetry Inc. Columbia, Maryland, USA) were slightly buoyant 
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and programmed to release from the fish on a certain date or when the fish had remained at a constant depth for 
4 or 5 days (in the case of fish mortality, or the tag attachment was expelled from the fish). Once at the surface, 
the tag location was received by ARGOS-satellites, and the tag transmitted a subset of archived data (depth, tem-
perature and estimates of sunset/sunrise times) to the satellites (http://​www.​argos-​system.​org), with a temporal 
resolution of 15–60 min depending on the deployment duration.

Before tagging, the fish were anaesthetised by using MS-222 (Ireland, Iceland and Greenland), benzocaine 
(Denmark and Spain), or 2-phenoxyethanol (Norway) and brought to a tagging cradle where body length and 
mass were measured. The tags were attached externally to individual fish by bridling the tag to two cushioned 
back plates that were wired through the dorsal musculature below the dorsal fin28. The tag mass averaged 0.57% 
of the fish body mass (range 0.40–0.74%). A numbered custom-made disc tag (http://​www.​floyt​ag.​com) with 
contact information was attached to one of the plates in case the fish was recaptured to test for tagging effects 
in a separate study33.

After tagging, the fish were placed in a large tank or cage and released as soon as they appeared recovered, 
e.g., breathing and swimming normally and reacting when tactile pressure was applied to the tail base. Since 
the tags would release if they were at constant depth for 4–5 days we did not want the salmon to remain in the 
rivers with homogeneous depth after tagging. Therefore river-captured salmon were transported 5–15 km away 
from the river mouth before release.

The experimental procedures were in each case approved by national authorities. All methods were carried 
out in accordance with relevant guidelines and regulations and fish tagging was approved by the Norwegian 
Animal Research Authority, the Animal Experimentation Council of Denmark (incl. Greenland), The Icelandic 
Animal Research Authority, the Department of Health and Children Ireland, and the Ponteverda Province Spain.

Data recovery and analysis, reconstruction of ocean migration.  In total, data from 148 Atlantic 
salmon from a total of ~ 15,000 days were recovered (Table 1). Average data recovery from the PSATs was 69% of 
the data that could potentially have been recovered. Migration tracks from release of the fish after tagging until 
the tag popped up could be estimated for 105 salmon based on daily geographic location estimates (Fig. 1). The 
pop-up location of the tag was provided for 43 additional salmon (Fig. 1).

Data analyses.  Geolocation of tagged fish to reconstruct oceanic migration was done using hidden Markov 
models (HMMs). HMMs are state space models that generate a series of non-parametric spatial probability dis-
tributions by a forward–backward recursion on a defined spatial grid41. HMMs enable geolocation of animals in 
scenarios when light-based geolocation estimates are either poor or absent41.

The HMM developed by Pedersen41 was the primary model used for geolocation. The results were compared 
to outputs generated by using the method described by Strøm et al.12 to quantify potential biases in estimated 
migration route caused by the structure of the geolocation models. In both models, daily data likelihoods were 
calculated using the estimated location (latitude and longitude), mean daily temperature at the surface (< 20 m) 
and maximum depth12,41. The only major difference between the two models was the spatial grid defining the 
model domain, resulting in some structural difference in the underlying random walks. In the approach devel-
oped by Pedersen41 the spatial grid was discretised based on latitude and longitude, whereas in the method used 
by Strøm et al.12, the grid was discretised based on distances. In both models, individual migration routes were 
reconstructed using the mean of 1000 random tracks42. The comparison of outputs between the two models 
showed little differences between individual migration trajectories, indicating that the outputs were not affected 
by the spatial structure of the models.

Population-specific ocean distributions were quantified by calculating the combined residency distributions 
(RDs) for all fish with ocean migrations exceeding 10 days. RDs are the cumulative probability distribution for 
the entire spatial domain and provide an estimate of the ocean distribution that includes the uncertainty of the 
data41. The spatial overlaps among populations were determined by calculating the overlap in population-specific 
RDs using Bhattacharrya’s affinity43. Icelandic data were too few to be included. Data from the two Danish popu-
lations were combined in temporal and annual comparisons, because they belong to rivers close to each other. 
Depth data for salmon from Rivers Alta, Neiden and Orkla in Norway have previously been analysed in relation 
to day length and temperature stratification by Hedger et al.28, but not in relation to their modelled migration 
routes as in the present study.

Data availability
Data will be made available upon request.
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