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A B S T R A C T   

Valuing the ecosystem services of urban trees is important for gaining public and political support for urban tree 
conservation and maintenance. The i-Tree Eco software application can be used to estimate regulating ecosystem 
services provided by urban forests. However, existing municipal tree inventories may not contain data necessary 
for running i-Tree Eco and manual field surveys are costly and time consuming. Using a tree inventory of Oslo, 
Norway, as an example, we demonstrate the potential of geospatial and machine learning methods to supple
ment missing and incomplete i-Tree Eco attributes in existing municipal inventories for the purpose of rapid low- 
cost urban ecosystem accounting. We correlate manually surveyed stem diameter and crown dimensions derived 
from airborne laser scanning imagery to complete most structural attributes. We then use auxiliary spatial da
tasets to derive missing attributes of trees’ spatial context and include differentiation of air pollution levels. The 
integration of Oslo’s tree inventory with available spatial data increases the proportion of records suitable for i- 
Tree Eco analysis from 19 % to 54 %. Furthermore, we illustrate how machine learning with Bayesian networks 
can be used to extrapolate i-Tree Eco outputs and infer the value of the entire municipal inventory. We find the 
expected total asset value of municipal trees in Oslo to be 38.5–43.4 million USD, depending on different 
modelling assumptions. We argue that there is a potential for greater use of geospatial methods in compiling 
information for valuation of urban tree inventories, especially when assessing location-specific tree character
istics, and for more spatially sensitive scaling methods for determining asset values of urban forests for the 
purpose of awareness-raising. However, given the available data in our case, we question the accuracy of values 
inferred by Bayesian networks in relation to the purposes of ecosystem accounting and tree compensation va
luation.   

1. Introduction 

More than half of the world’s population lives in cities. The pro
portion is predicted to rise to 68 % by 2050 globally and from 75 % in 
2020 to nearly 84 % in 2050 in Europe (UN, 2018), leading to increased 
demand for living space. This results in the conversion of natural ve
getation cover to artificial surfaces and soil sealing (European 
Environment Agency (EEA, 2006). Urban green infrastructure com
prising all types of vegetation provides ecosystem services (ES) to urban 
populations (European Commission, 2013; Gomez-Baggethun and 
Barton, 2013). Urban forests and individual trees are the major com
ponents of urban green infrastructure, delivering provisioning, cultural 
and regulating services (Mullaney et al., 2015; Nesbitt et al., 2017;  

Nowak et al., 2008; Song et al., 2018) with social, economic, health and 
visual aesthetic benefits to humans (Roy et al., 2012). For example, the 
health benefits of trees and forests in the coterminous US were valued at 
1.5–13 billion USD, mostly occurring in urban areas (Nowak et al., 
2014). 

The population of Oslo municipality, Norway, is predicted to grow 
from 673 000 in 2018 to 850 000 by 2030 (Oslo municipality, 2018). 
Oslo’s Municipal Plan focuses on the growth within the existing built 
zone, following a strategy of densification and urban transformation. 
This poses a threat to the city’s green infrastructure. Trees within the 
city’s built zone are a substantial ecosystem asset (Barton et al., 2015). 
Oslo currently has twice as much tree canopy as roof area (Hanssen 
et al., 2019), ranks high in international comparisons of city greenview 
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index (MIT Senseable City Lab, 2020) and was awarded the European 
Green Capital 2019 (European Commission, 2020). Trees’ importance 
for stormwater management and air pollution removal is recognised in 
Oslo’s Strategy for City Trees (Urban Environment Agency (BYM, 
2014). The Municipal Plan calls for establishing rules for protection of 
large trees within the urban core. The city’s climate accounts lack 
documentation of urban trees’ contribution to the city’s carbon storage 
and sequestration (Søgaard and Bjørkelo, 2018). Oslo currently imple
ments a series of methods that directly or indirectly map and value 
urban trees using both biophysical and monetary methods (Agency for 
Planning and Building Services (PBE, 2018a, 2018b; Barton et al., 2015;  
Hanssen et al., 2019; Lauwers et al., 2017). However, none of these 
methods combines a city-wide mapping of individual trees with tree 
specific quantification and valuation of regulating ES. In site-specific 
development, lacking quantification of benefits of individual trees can 
lead to tree removal and inadequate compensation in terms of reg
ulating ES. Quantification of the benefits of individual street trees is 
also a component of urban ecosystem accounting for municipal deci
sion-support (UN, 2017; Wang et al., 2019). ES mapping for policy- 
support has been limited by lacking documentation of data and mod
elling uncertainty, lacking assessment relative to different purposes, 
and where necessary for decision-making, lacking approaches to reduce 
that uncertainty (Hou et al., 2013; Schulp et al., 2014). 

In Oslo, the i-Tree Eco model – a software application intended for 
quantification and valuation of regulating ES provided by urban tree 
inventories, developed by the United States Department of Agriculture 
Forest Service (“i-Tree Eco v.6, ” n.d.) – could provide the municipality 
with a means for both (i) site-specific service quantification and benefit 
valuation and (ii) ecosystem accounting of city-wide tree populations 
that are currently only partially inventoried. I-Tree Eco has been 
identified as a modelling tool that can meet different municipal policy- 
support needs of Oslo, including awareness-raising and funding sup
port, ecosystem accounting, spatial priority-setting, instrument design, 
economic liability and compensation (Barton et al., 2015; Gomez- 
Baggethun and Barton, 2013). 

The main input to i-Tree Eco analysis is a database of individual 
trees and their attributes comprising tree species, dimensions, condition 
or spatial context measures. In the standard approach recommended by 
the i-Tree Eco Field Guide (i-Tree Eco Field Guide v6.0, 2019), the tree 
database is obtained through a field survey in which tree attributes are 
measured manually and individually. Depending on the sampling in
tensity and spatial extent of the study, this can be time consuming and 
expensive. The cost of manual surveys is a major limitation in valuing 
regulating ES of urban trees – a third of respondents in a study of UK i- 
Tree projects reported time taken to complete surveys as a significant 
barrier to implementation (Raum et al., 2019). 

Municipalities often maintain a tree inventory for tree management 
purposes. In Oslo, the Urban Environment Agency maintains a database 
of nearly 30 000 geolocated street and park trees, used to manage and 
monitor private tree maintenance contracts. Municipal tree inventories 
can be used as a source of individual tree data for i-Tree Eco analysis 
instead of investing in specialized manual field surveys. However, 
missing and incomplete tree attributes in these inventories relative to 
the needs of i-Tree Eco can lead to low numbers of analysed trees and/ 
or lower accuracy of results. In the worst case, municipal tree in
ventories do not contain even minimum data required to run i-Tree Eco. 

Rapid technological advances have enabled the application of 
geospatial technologies in automated urban forest surveying. In a re
view of urban tree inventorying methods, Nielsen et al. (2014) found 
manual field surveys to be more accurate than remote sensing-based 
surveys, calling for further technological development and scientific 
testing before these methods can replace manual surveys. Recently, 
however, increased accuracy and availability of high-resolution air
borne laser scanning (ALS) or terrestrial laser scanning (TLS) and hy
perspectral imagery allowed for partial or complete substitution of 
manual surveying of locations, species and structural attributes of trees 
in urban environments (Fassnacht et al., 2016; Gu and Townsend, 2016;  
Heo et al., 2019; Herrero-Huerta et al., 2018; Liew et al., 2018;  
Mozgeris et al., 2018; Saarinen et al., 2014; Zagoranski et al., 2018).  
Alonzo et al. (2016) demonstrated that species-level canopy cover es
timates from remote sensing methods had generally smaller uncertainty 
compared to field-plot methods. Furthermore, new approaches to vir
tual ground-based tree inventorying using Google Street View are suf
ficiently accurate to complement and verify remote sensing data 
(Berland and Lange, 2017). 

These advances suggest a greater role of remote sensing in automated 
surveying of individual tree structural attributes and species for i-Tree Eco. 
Furthermore, attributes of tree’s spatial context, i.e. expressing the re
lationship between a tree and its surrounding structures and phenomena 
(buildings, other trees, land use), can more rapidly, consistently and at low 
cost be estimated using geospatial analysis methods from digital terrain 
models, cadastral maps or land use maps. To our knowledge, these new 
approaches are scarcely used in i-Tree Eco studies. Zhao et al. (2018) used 
geospatial technologies to create an urban tree inventory in Nantong City, 
China. They employed mobile TLS to automatically detect location, height, 
crown width and stem diameter of individual street trees for evaluation of 
carbon sequestration and PM2.5 removal. We found only two studies ex
ploring the integration of spatial data with existing municipal tree in
ventories for calculating missing tree attributes; both use spatial data to 
estimate attributes of spatial context. Scholz et al. (2018) used a high-re
solution digital surface model to estimate trees’ crown light exposure (for 
estimation of carbon sequestration) in Duisburg, Germany. Similarly, at 
University of Pennsylvania, US, Bassett (2015) measured trees’ distance and 
direction to buildings (for estimation of building energy savings by tem
perature regulation due to trees) in GIS; buildings were represented by their 
footprints in a cadastre map. 

For ecosystem accounting, a further step of extrapolation of i-Tree Eco 
valuation results from partially inventoried municipal trees to the whole 
population of municipally owned trees is required. This task can be tackled 
by Bayesian networks (BN), a generic machine learning method for re
presenting a correlation structure in a causal network and for decision 
analysis under conditions of missing data and uncertainty (Kjærulff and 
Madsen, 2008). Expert systems such as BN have been used successfully in 
several environmental management fields to infer unobserved character
istics across a population (Barton et al., 2012). BN have been identified as 
potentially useful for generalizing modelling results from study areas to 
ecosystem wide accounting (Barton et al., 2019). The ability of BN to ex
plicitly consider data and modelling uncertainty also address the un
certainty documentation gap identified in the ES mapping and modelling 
literature (Hou et al., 2013; Schulp et al., 2014). 

Compared to the wide adoption of i-Tree Eco, these few examples 
suggest that the community of i-Tree Eco practitioners makes limited 
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use of new geospatial and machine learning methods to replace or 
supplement manual field surveys of urban forests. Developing further 
the approaches started by Bassett (2015); Scholz et al. (2018) and Zhao 
et al. (2018), in this article we aim to demonstrate the potential of 
geospatial and machine learning methods to both supplement missing 
tree attributes and increase the number of trees suitable for i-Tree Eco 
analysis by filling data gaps in existing municipal tree inventories. We 
will show how spatial data from ALS imagery and auxiliary spatial 
datasets were integrated with existing municipal tree inventory of Oslo 
to supplement a range of missing and incomplete tree attributes. Sub
sequently, we will demonstrate how machine learning with BN enabled 
inferring the value of the entire municipal urban forest from partially 
overlapping samples of tree attributes. 

2. Methods 

2.1. Study area and used software 

The study area is the city of Oslo built zone regulated for urban 
development, where the analysed tree inventory is located. Oslo built 
zone covers 147 km2, of which 47 % was covered by vegetation in 
2017, 27 % of which was regulated green space (Agency for Planning 
and Building Services (PBE, 2018a). The population was 640 902 in 
2015, which is the reference year in this study (Statistics Norway (SSB, 
2019). 

For analysis of tree inventory of Oslo, we used i-Tree Eco v.6., a part 
of the i-Tree suite of software which quantifies urban forest structure, 
estimates the supply of and benefits from regulating ES provided by 
trees in terms of annual ES indicators and associated monetary values 
and enables forecast modelling and management support. Estimated ES 
indicators included in this study were air pollution removal, avoided 
runoff, carbon sequestration and building energy savings. Supply of 
oxygen production and volatile organic compound emissions is esti
mated, but these services/disservices are not valued (Nowak, 2019). To 
quantify ES, i-Tree Eco uses peer-reviewed model equations based on 
long-term research. Required input information to the model is species 
and stem diameter at breast height (DBH) of individual trees, recorded 
in random sample plots or complete inventory. Optional tree attributes 
(condition, structure, spatial context) increase model accuracy and 
enable quantifying additional ES (Use of Direct Measures by i-Tree Eco 
(v6.0), 2018). Table S4 in Supplementary Material provides an over
view of i-Tree Eco attributes. Further input to the model is location 
information including weather and air pollution concentration data 
(used to estimate air pollution removal) and benefit prices of ES in
dicators. The resulting estimates of annual ES indicators and associated 
monetary values are provided as aggregates across the analysed tree 
inventory or disaggregated to individual tree level (for complete in
ventory). I-Tree Eco has been extensively used for valuation of urban 
trees in both small inventories and regional scale assessment projects, 
initially in the US and recently in Canada, Australia, Mexico and several 
European countries, particularly the UK (i-Tree International, 2020; i- 
Tree Reports, 2020). 

We further used ESRI ArcMap 10.6 (ESRI, 2018) for geospatial 
analysis, The R Project for Statistical Computing (R Core Team, 2018) 
for statistical analysis and Expert Learning tool in Hugin Expert® soft
ware for BN modelling (Madsen et al., 2003). 

2.2. Input data 

2.2.1. Municipal tree dataset 
Within the built zone, the Urban Environment Agency manages 

approximately 30 000 park and street trees, which are the subject of 
this study. The tree inventory of the Urban Environment Agency, 
hereafter the “municipal dataset”, contains trees recorded over several 
years of the agency’s sub-contracted planting and management. Trees in 
the dataset are represented as points with associated attributes (stem 
coordinates, species, stem diameter and/or circumference and condi
tion indicators) (Fig. 1A), however, many of these attributes are in
complete. As of August 2018, the dataset contained 30 237 records, 
reduced to 29 928 after removing records with identical locations. 

Before further analysis, we corrected gross errors (i.e. mistakes in 
measurement, recording or digitization errors and mistakes). Stem 
diameter or circumference was recorded for 6 313 trees (21.1 %). We 
calculated diameter from the circumference, assuming a circular stem 
cross-section, and considered it an estimation of DBH. Tree species 
(Norwegian or Latin name) was recorded for 17 044 trees (57.0 %) and 
we matched it to predefined species from the i-Tree database (i-Tree 
Database, 2020). Recorded condition indicators were not used, because 
they did not match the condition indicators used in i-Tree Eco. The 
resulting municipal dataset contains 5 782 trees with recorded DBH 
(19.3 %) and 16 989 trees with recorded species (56.8 %). 

2.2.2. ALS tree dataset 
Using ALS imagery, Hanssen et al. (2019) identified individual trees 

taller than 2.5 m on both private and public land in Oslo’s built zone in 
2011, 2014 and 2017. We use the 2014 dataset containing 402 610 
records. In this dataset, hereafter the “ALS dataset”, each recorded tree 
is represented by a polygon of 2D crown geometry (Fig. 1A). An addi
tional attribute of each tree is crown diameter, approximated as a 
diameter circle circumscribed to the crown polygon. The ALS dataset 
represents a complete tree population of Oslo built zone regardless of 
management practices and ownership and is therefore suitable for ac
counting of urban tree canopy at an aggregate level. However, due to 
lacking information about tree species and lower accuracy at individual 
tree level caused by lower point density of ALS point clouds (Hanssen 
et al., 2019), the dataset cannot be directly used in i-Tree Eco analysis. 

2.2.3. Auxiliary spatial datasets 
We used a vector map of Land use in urban settlements in reference 

scale 1:5 000 (Statistics Norway, 2015) (Fig. 1B), hereafter “Land use 
map”, and a vector FKB-AR5 Land resource map in reference scale 1:5 
000 (Norwegian Institute for Bioeconomy Research (NIBIO, 2015) 
(Fig. 1C), hereafter “Land resource map”, for information about local 
land use. The Land use map provides detailed information about land 
use classes of built-up areas but does not cover all unbuilt space, 
whereas the Land resource map is seamless, but with lower information 
resolution. Vector FKB-Buildings map in reference scale 1:5 000 
(Norwegian Mapping Authority, 2015) (Fig. 1D), hereafter “Building 
map”, was used for information about building footprints. A non
negative difference raster of digital surface (DSM) and terrain (DTM) 
model in 1-meter resolution (Norwegian Mapping Authority, 2014), 
hereafter “DSM-DTM raster”, was used to derive tree and building 
heights (Fig. 1E). 
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2.2.4. Location information 
For the reference year 2015, i-Tree Eco v.6 stores weather data in

cluding annual hourly precipitation levels provided by NOAA’s 
National Climatic Data Centre (NCDC), as well as air pollution levels of 
nitrogen dioxide (NO2), particulate matter 2.5 micrometres or less in 
diameter (PM2.5), carbon monoxide (CO), ozone (O3) and sulphur di
oxide (SO2) provided by the U.S. Environmental Protection Agency. For 
Oslo, both weather and air pollution data are stored for a single mon
itoring station Oslo-Blindern. 

The precipitation totals in i-Tree Eco were considerably different 
from values recorded by the Norwegian Meteorological Institute 
(Norwegian meteorological institute (MET, 2015) at a corresponding 
monitoring station in 2015 (NCDC: 55.77 mm, MET: 921.1 mm), im
plying missing observations in the NCDC data. Therefore we replaced 
the stored precipitation levels by annual hourly precipitation levels 
recorded by MET for the Oslo-Blindern station. 

Air pollution in Oslo varies significantly, depending mainly on 
distance from a pollution source (Schneider et al., 2017). To account for 
heterogeneity in air pollution levels and thus enable more precise es
timation of air pollution removal by trees, we replaced the stored air 
pollution data by air pollution levels spatially disaggregated to three 
zones, defined by limits for daily, winter and annual means of NO2 and 
PM10 (NILU and MET, 2015). In 2015, there were 12 stations mon
itoring hourly air pollution levels in Oslo (Norwegian Institute for Air 
Research (NILU, 2015). Levels of PM2.5 and NO2 in each zone were 
represented as medians of levels recorded by monitoring stations within 

each zone. Levels of CO, O3 and SO2 were recorded by one station only 
and were considered constant across all three zones. 

We used local Oslo and Norwegian data sources to determine ben
efit prices for ES indicators (see Supplementary Material for more in
formation). All values are in 2014 prices. 

2.3. Methodology workflow 

The methodology workflow is illustrated in Fig. 2. In Steps 1 and 
Step 2, missing and incomplete attributes in the existing municipal tree 
inventory are supplemented by associating stem points with crown 
geometry from the ALS dataset (Step 1) and with auxiliary spatial da
tasets (Step 2) using geospatial analysis. Only attributes influencing the 
included ES indicators are calculated (Table S4 in Supplementary Ma
terial, Use of Direct Measures by i-Tree Eco (v6.0), 2018). Furthermore, 
attributes which cannot be calculated from available spatial data 
(crown health) are omitted. Steps 1 and 2 result in a final tree dataset. 
Trees with a complete attribute set from the final dataset, together with 
location information, are the input to i-Tree Eco analysis. The outputs 
are processed in i-Tree Eco emulation using BN to estimate the total 
asset value of the complete municipal inventory. 

2.4. Step 1: associating stem points with crown geometry 

To enable associating crown geometry attributes from the ALS da
taset to stem points from the municipal dataset, we handled four 

Fig. 2. Methodology workflow of i-Tree Eco 
implementation in Oslo. 

Fig. 1. Used spatial datasets.  
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general cases of geometrical relationship between stem points and 
crown polygons (Fig. 3). In Case 1 (18 % of records in the municipal 
dataset), one crown polygon contains exactly one stem point and we 
directly joined crown polygons to corresponding stem points. In Case 2 
(51 % of records in the municipal dataset), one crown polygon contains 
more than one stem point. We split the concerned crown polygons by 
Voronoi tessellation, frequently used in tree crown segmentation 
(Heinimann and Breschan, 2012; Novotny et al., 2011). We then re
computed crown diameter (CD) of the new crown polygons, defined by 
the closest stem point, and joined them to corresponding stem points. In 
Case 3 (13 % of records in the municipal dataset), a stem point is not 
overlapped by any crown polygon. We used an inverse allometric 
equation suggested by Jucker et al. (2017) to predict CD from measured 
DBH if it was available (see Supplementary Material for further details 
on model fitting). We then approximated crown geometry as a circle 
centred at stem point with a diameter equal to predicted CD, adjusted 
for the geometry of neighbouring crowns. In Case 4 (18 % of records in 
the municipal dataset), a crown polygon contains no stem point. These 
records of the ALS dataset were utilized when adjusting the geometry of 
approximated tree crowns from Case 3 and when modelling crown light 
exposure. 

2.5. Step 2: integrating auxiliary spatial datasets 

We used geospatial analysis and statistical methods to integrate 
auxiliary spatial datasets and calculate missing and incomplete tree 
attributes. The developed methods follow attribute definition according 
to the i-Tree Eco Field Guide (i-Tree Eco Field Guide v6.0, 2019) where 
possible. 

2.5.1. Species 
In the municipal dataset of Oslo, tree species were manually re

corded for 56.8 % of trees. In the diverse urban environment, the 
combination of airborne optical imagery and airborne ALS imagery 
seems promising for automatic tree species classification to replace 
manual field surveys (Wang et al., 2018). However, we did not carry 
out additional automatic species classification because none of the 
available auxiliary datasets was suitable for this task. 

2.5.2. Stem diameter at breast height (DBH) 
In manual surveys, DBH is measured at 1.37 m above the ground. If 

DBH is not recorded, it can be either predicted from other structural 
attributes using allometric equations (Jucker et al., 2017), measured 
directly from TLS imagery (Cabo et al., 2018; Moskal and Zheng, 2011) 

or predicted indirectly from metrics calculated from ALS imagery 
(Tanhuanpää et al., 2014). To calculate DBH of municipal trees whose 
stem diameter or circumference was not recorded, we predicted DBH 
from derived total tree height (H) using an allometric equation sug
gested by Jucker et al. (2017) (69 % of records in the municipal dataset; 
see Supplementary Material for further details on model fitting). 

2.5.3. Crown width (CD) 
Crown diameter in i-Tree Eco is expressed as crown width in two 

cardinal directions – north-south and east-west, measured perpendicu
larly to the stem. Allometric equations to predict CD from other 
structural attributes have been developed (Jucker et al., 2017; Nowak, 
2019). Furthermore, direct measurement of CD from TLS imagery 
(Herrero-Huerta et al., 2018; Zhao et al., 2018) or ALS imagery (Alonzo 
et al., 2016; Zhang et al., 2015) is common. As described in Step 1: 
Associating stem points with crown geometry, we both utilized the 
direct measurement of CD from the ALS dataset (Cases 1 and 2) and 
predicted CD from DBH using allometric equations (Case 3). We derived 
crown width in cardinal directions as the width and length of minimum 
bounding envelope of the crown geometry. 

2.5.4. Total tree height and Height to live top (H, HLT) 
In manual surveys, H is measured as the distance from the ground to 

treetop (alive or dead) along the stem. If H is not recorded, it can be 
either predicted from other structural attributes using allometric 
equations (Jucker et al., 2017; Nowak, 2019; Scholz et al., 2018) or 
measured directly from ALS (Alonzo et al., 2016; Saarinen et al., 2014;  
Zhang et al., 2015) or TLS (Martí et al., 2018; Moskal and Zheng, 2011) 
imagery. We derived H from DSM-DTM raster at stem location. To ac
count for inaccuracies in recorded stem location and cases where 
treetop does not align with stem location, we recorded the maximum 
value in a 3 × 3 Rook’s neighbourhood of the stem point. If the re
corded value was smaller than 0.5 m, suggesting a tree was cut before 
or planted after the DSM-DTM dataset was created, we predicted H 
from DBH using in-built i-Tree Eco species-specific allometric equa
tions. We approximated HLT, i.e. the height from ground to live treetop, 
as equal to H. 

2.5.5. Height to crown base (HCB) 
Defined as the height from ground to live crown base, apart from 

manual surveys, HCB can be measured from ALS imagery (Alonzo et al., 
2016; Zhang et al., 2015) or TLS imagery (Herrero-Huerta et al., 2018;  
Wu et al., 2013). Because HCB was not recorded in the ALS dataset, we 
predicted it from DBH using in-built i-Tree Eco species-specific 

Fig. 3. Four cases of geometrical relationship between stem points (municipal dataset) and crown polygons (ALS dataset).  
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allometric equations. 

2.5.6. Crown light exposure (CLE) 
The i-Tree Eco Field Guide defines crown light exposure as “the 

number of sides of the tree’s crown receiving light from above or the 
side” where obstructions for light are “any parts of an adjacent tree 
crown or building that are a) overtopping any part of that crown side, 
or b) within one average crown width away from the measured tree’s 
stem and the object is at least as tall as the measured tree”. CLE is 
expressed by a score from 0 (tree does not receive light from any side) 
to 5 (tree receives light from all directions and from above). Several 
geospatial analysis methods for deriving CLE have been developed.  
Scholz et al. (2018) estimate CLE by observing whether digital surface 
model pixels in four compass directions from the tree’s centre are lo
cated higher (casting a shadow on the tree) or lower (permitting the sun 
to reach the tree) than the tree’s height. Alternatively, Pace et al. (2018) 
estimate CLE from a competition index computed in the Single-tree- 
based stand simulator SILVA (Pretzsch et al., 2002) and using a fixed 
distance buffer to account for shading by buildings and other trees. We 
estimated CLE in a GIS processing routine as the percentage of crown 
perimeter exposed to open light (Fig. 4). Following the i-Tree Eco Field 
Guide, we first selected all adjacent buildings and tree crowns, i.e. all 
pixels from the DSM-DTM raster within a buffer around stem point with 
radius equal to CD (Fig. 4A). We then extracted all pixels with a value 
equal to or larger than recorded H (Fig. 4B). To minimize the effect of 
concavities in the crown perimeter, we approximated the crown geo
metry by its convex hull (Fig. 4C). Finally, we calculated the proportion 
of crown’s perimeter receiving light by constructing tangents between 
stem point and edges of extracted objects (Fig. 4D). To match the 

calculated proportion to i-Tree Eco scores, we classified the proportion 
of crown’s perimeter receiving light as follows: 0–12.5 %: CLE = 1, 
12.6–37.5 %: CLE = 2, 37.6–62.5 %: CLE = 3, 62.6–87.5 %: CLE = 
4, > 87.6 %: CLE = 5. Due to the origin of the ALS dataset, no overlaps 
exist between detected crowns and we assumed light from above for all 
trees, although in reality overlaps between crowns are common in 
dense tree stands. 

2.5.7. Distance and direction to building (DB) 
To estimate building energy savings, distance and direction to the 

three nearest residential buildings can be measured in a manual survey. 
Distance and direction measurement between geometrical features 
(stem points and building footprints) is a simple geospatial analysis 
task, for i-Tree Eco analysis used for example by Bassett (2015). Fol
lowing the i-Tree Eco Field Guide, we measured distance and direction 
from stem points of trees taller than 6 m to three nearest residential 
building footprints selected from the Building map, lower than four 
storeys and closer than 18.3 m to the analysed stem point. 

2.5.8. Land use (LU) 
In manual surveys, one of 13 default land use classes at tree location 

is recorded. We combined the Land use and Land resource maps to 
create a seamless LU map covering the study area and reclassified it to 
match LU classes used by i-Tree Eco. To determine each tree’s LU class, 
we intersected each stem point with the seamless LU map in GIS. 
Following the definition of Transportation class, trees intersected by 
minor road classes were classified according to the nearest adjacent LU. 

Fig. 4. Modelling crown light exposure. (A) a buffer of radius equal to the crown diameter and objects within this buffer, (B) selected objects taller than the analysed 
tree, (C) convex hull of the analysed tree crown, (D) tangents between stem point and edges of extracted objects define parts of crown perimeter not receiving light. In 
these hypothetical settings, 70 % of the analysed crown perimeter receives light, corresponding to crown light exposure class 3. 
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2.5.9. Percent crown missing (PCM) 
Percent crown missing is the proportion of tree crown volume not 

occupied by branches and leaves. In manual surveys, it is estimated by 
comparing the tree’s crown shape to a natural crown shape for parti
cular species. No studies addressing PCM estimation using geospatial 
analysis methods were found and therefore we used i-Tree Eco default 
value 15 %–20 % for all trees. 

2.6. i-Tree Eco analysis 

The final dataset was split by air pollution zones and we ran an i- 
Tree Eco model for each zone. Trees with complete attribute set were 
imported into i-Tree Eco v.6 together with location information. The 
output from the models – estimates of annual ES indicators and asso
ciated monetary values – were linked back to individual trees in the 
final dataset. Estimated ES indicators were: air pollution removal, 
avoided runoff, carbon sequestration and building energy savings. 

We furthermore estimated asset value per tree based on the annual 
monetary value of ES indicators as calculated by i-Tree Eco, current tree 
age estimates and tree life expectancy based on simple allometric 
equations (Lauwers et al., 2017) and a 1.4 % discount rate (Stern, 
2007). The asset value was calculated as the present value of the dis
counted flow of annual monetary value of the ES indicator for the ex
pected lifetime of the tree. 

2.7. i-Tree Eco emulation and model assessment 

The final dataset was incomplete with regards to DBH and species 
required by i-Tree Eco, while CD and H were calculated for almost all 
trees (Fig. 5). Based on i-Tree Eco outputs for the final dataset and tree 
location characteristics (air pollution level), we therefore used BN to 
emulate ES indicators and asset values for all 29 928 trees from the 
municipal dataset. For inference of asset value, we used crown area 
(CA) instead of CD. While CD and CA are close proxies, CA is a direct 
measure derived from ALS segmentation. Area-based asset values are 
also the unit of measure for ecosystem accounting. 

Hugin Expert® software uses expectation maximization (Lauritzen, 
1995) to learn conditional probability tables in the presence of missing 
data. It is a nonparametric approach. We used the necessary path 
condition algorithm, which allows users to guide learning using a 
causal structure with a limited number of variables. In effect, the BN is a 
reduced form emulation model (Castelletti et al., 2012) for the complex 
i-Tree Eco model. We also used the mutual information index to eval
uate the information value of observing derived tree attributes (CA, H) 
relative to observing attributes usually measured in manual field sur
veys (DBH, species). We scaled the estimated asset value per tree from 
the final dataset to the total 29 926 trees of the municipal dataset to 
estimate the expected total asset value of municipally managed trees. 
We assessed how the robustness of the resulting total asset value 

Fig. 5. Information gain from integrating mu
nicipal tree dataset with available spatial data. 
Each concentric circle symbolizes one attri
bute. Arc size is proportional to the percentage 
of trees with that attribute in the final dataset. 
Arc colour represents the origin of the attribute 
– the original Municipal dataset, Step 1 
(Associating stem points with crown geometry) 
or Step 2 (Integrating auxiliary spatial data
sets). pie wedges illustrate the combinations of 
recorded, calculated or missing attributes for 
subsamples of trees in the final dataset. The pie 
wedge outlined in red depicts the proportion of 
trees with complete attribute set used in the 
final i-Tree Eco analysis. 
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depends on assumptions about the non-parametric probability dis
tribution of all trees. Using the Hugin Expert spatial data processing 
module we estimated the Bayesian credible interval of the asset value, 
and discuss it relative to different decision-support requirements. (See 
Supplementary Material for further details.) 

3. Results 

3.1. Information gain from integrating municipal tree dataset with available 
spatial data 

Information gain, i.e. the proportion of trees with calculated attri
butes after each step, is visualized in Fig. 5 and summarised in Table S4 
in Supplementary Material. The basis for i-Tree Eco analysis in Oslo was 
a municipal dataset containing 29 928 recorded trees. Species were 
recorded for 57 % and DBH for 19 % of trees. Furthermore, GPS co
ordinates were recorded for each tree. I-Tree Eco analysis of the mu
nicipal dataset is possible for 19 % of trees, i.e. all trees with both 
species and DBH recorded. 

Integrating crown geometry from the ALS dataset (Step 1) enabled 
calculating CD for 76 % of trees. The number of trees suitable for i-Tree 
Eco analysis remains constant. Calculating CD from the ALS dataset 
instead of predicting it using allometric equations in i-Tree Eco is 
however expected to increase the reliability of estimated annual ES 
indicators and associated monetary values because it relies on direct 
measurement of tree crowns rather than modelling. 

Integrating auxiliary spatial datasets (Step 2) enabled supple
menting incomplete attributes for DBH (71 % of trees) and CD (6% of 
trees). Furthermore, seven missing attributes were calculated, namely 
H, HLT, HCB, CLE, CD, LU and PCM. The integration of auxiliary spatial 
datasets enabled estimating additional ES indicator (building energy 
savings) and increased the number of trees suitable for i-Tree Eco 
analysis from 19 % to 54 % of trees. Supplementing missing attributes is 
also expected to increase the reliability of estimated annual ES in
dicators and associated monetary values. 

Fig. 5 also enables summarizing the effectivity of calculation 
methods representing the municipal tree population, i.e. the proportion 
of final tree dataset with calculated attributes. Methods requiring only 
tree coordinates and auxiliary spatial datasets on the input were highly 
effective (100 % for DB and LU). The effectivity of methods for calcu
lating H, HLT, CD, CLE and DBH was lower, mainly due to the methods’ 
dependency on other attributes such as DBH. The method used to cal
culate HCB has the lowest effectivity due to species-specific allometric 
equation used to calculate this attribute. The low percentage of trees 
with recorded species (57 %) is the main cause of only 54 % of trees 
from the final dataset included in the i-Tree Eco analysis 

3.2. Ecosystem services of individual municipal trees 

The outputs from i-Tree Eco analysis – annual ES indicators and 
associated monetary values for individual trees – are visualized in an 
interactive map (link in Supplementary Material). Fig. 6 presents the 
per-tree average annual monetary value, distributed per individual ES 
indicators. The average value of air pollution removal constitutes the 
largest proportion (93.5 %) of the annual monetary value of an average 
tree, highlighting the importance of correct estimation of air pollution 
at tree location, here addressed by air quality zonation. The proportions 
of values associated with other ES indicators (avoided runoff, carbon 
sequestration and building energy savings) are considerably smaller.  
Fig. 7 illustrates the distribution of per-tree average annual monetary 
value for the most common genera and CD classes. Much of variation in 
ES supply from individual trees can be explained by tree size, re
presented here by CD. Observation of tree species, here summarised by 
genus, provides further insight into the variation. 

3.3. Asset value of all municipal trees 

The mean asset value per tree, estimated by BN i-Tree Eco emula
tion model using all information available about all 29 928 trees from 
the municipal dataset, is 1 443 USD/tree. The spatial variation in the ES 
indicators, particularly in air pollution removal, is large and leads to the 
mean asset value dropping to 893 USD/tree in the lowest air pollution 
zone and rising to 2 347 USD/tree in the highest air pollution zone. 

Fig. 6. Per-tree average annual monetary value distributed per ES indicator.  

Fig. 7. Distribution of per-tree average annual monetary value for the most common genera and crown diameter classes.  
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Value of information analysis using Hugin Expert® software (Fig. 9) 
shows that observation of CA provides more information about the asset 
value than other variables. Air pollution zone, DBH and H are relatively 
similar in predictive power. Field observations of tree genus do not 
provide as much information as structural tree attributes (CA, DBH, H). 
Structural tree attributes - in particular crown area - are better pre
dictors of regulating ES estimated by i-Tree Eco. 

Structural attributes of individual trees and ES indicators are not 
normally distributed, with many small trees and a few tall large-canopy 
trees with exceptional asset values (> 10 000 USD/tree). When scaling 
individual asset value predicted by the model to the population, total 
asset values are sensitive to assumptions about the shape and resolution 
of the probability distribution of the tree population. The two panels on 
the far right of Fig. 8 show that a non-parametric probability dis
tribution with low resolution (top right panel) produces a higher ag
gregate asset value than a probability distribution with high resolution 
(bottom right panel). If individual tree asset values are inferred using 
the Hugin Spatial Processing Tool, the aggregate asset values are yet 
more conservative. The expected total asset value with these different 
inference approaches is 33.1–43.8 million USD (see Supplementary 
Material for further details). 

4. Discussion 

In this paper, we demonstrated the potential of geospatial and 
machine learning methods to fill data gaps in existing tree inventories 
and enable i-Tree Eco analysis. By integrating the tree inventory of 
Urban Environment Agency of Oslo, Norway, with available spatial 
data, we were able to both supplement missing i-Tree Eco attributes and 
increase the proportion of tree records suitable for i-Tree Eco analysis 
from 19 % to 54 %. Integrating spatial data enabling species recognition 
into the processing chain would further increase the proportion to 91 
%, which is the current proportion of inventoried trees with recorded 

DBH. Furthermore, we illustrated how machine learning with BN can 
be used to extrapolate i-Tree Eco outputs and infer the value of the 
entire municipal inventory. 

These are the first steps towards a full substitution of manual field 
surveys by geospatial methods-based surveys. Advances in the avail
ability and combination of high-resolution ALS and hyperspectral 
imagery have already enabled detection of individual trees and their 
attributes, including crown dimensions, species and condition 
(Fassnacht et al., 2016; Gu and Townsend, 2016; Heo et al., 2019;  
Herrero-Huerta et al., 2018; Liew et al., 2018; Mozgeris et al., 2018;  
Saarinen et al., 2014; Zagoranski et al., 2018). There is an opportunity 
for the i-Tree community to actively use this data and tailor the de
tection methods to fit i-Tree Eco requirements. I-Tree practitioners have 
started to use geospatial analysis methods to generate selected field 
measurements such as CLE and DB (Bassett, 2015; Scholz et al., 2018), 
but we show in this paper that there is scope for more. 

The i-Tree Eco Field Guide puts a strong focus on the measurement 
procedures of individual attributes in manual field surveys to calculate 
reliable estimates of ES indicators. Implementing i-Tree Eco on top of 
tree inventories that are not carried out in accordance with these 
guidelines and substituting manual field measurements of input attri
butes with automatic methods may increase the uncertainty of resulting 
ES indicators, depending on the functional dependency between tree 
attributes and respective ES indicators. While e.g. structural attributes 
(H, PCM) or tree species are used for estimating several ES indicators, 
CLE or DB are used for single ES indicator only (lower part of Table 1). 

The reliability of tree attributes estimated here varies with the 
methods used (upper part of Table 1), i.e. statistical or geospatial 
methods. The reliability of statistical methods, applied to estimate DBH 
and a small portion of CD, might be negatively affected by hetero
geneity in tree species, growing conditions or management practices, 
which interfere with the observed functional relationship between tree 
dimensions (see Supplementary Material for details of the regression 

Fig. 8. A Bayesian network emulating tree asset value based on i-Tree Eco and a selection of attributes from the final dataset. Variable windows show probability 
distributions for categorical variables and continuous variables discretized into intervals. Mean (μ) and variance (σ2) of continuous variables is reported at the top of 
each window. 

Fig. 9. Index of mutual information between asset value and tree attributes.  
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models). This is reflected in the relatively low R2 value of the respective 
prediction models used in this study (0.46 for CD, 0.51 for DBH). Ac
counting for these factors might lead to more reliable estimates (Vaz 
Monteiro et al., 2016). Similarly, the in-built i-Tree Eco allometric 
equations, used in this study to predict H and HCB, are fitted on da
tasets from numerous cities and might not be representative for the 
conditions of Oslo. Finally, our regression models lead to under
estimation of CD and DBH, because these were estimated without ap
plying a correction factor for logarithmic transformation bias. This 
underestimation means that the resulting ES indicators and associated 
monetary value are conservative for 77 % of trees suitable for the i-Tree 
Eco analysis. When using allometric equations, it is important to always 
apply a bias correction term when back-transforming prediction on a 
logarithmic scale to prediction on the original scale (Baskerville, 1972;  
Clifford et al., 2013; Smith, 1993). In a further use of the municipal tree 
dataset, this bias correction will be applied. 

Geospatial methods on the other hand often have a potential to 
decrease the uncertainties of manual field measurements which might 
occur due to local conditions, access rights or subjective perceptions of 
the survey crew, especially when the position of the tree towards other 
structures is assessed – such as CLE, DB or LU. The reliability of attri
butes derived using geospatial methods is in that case affected by the 
precision and accuracy of the spatial datasets used, and by accuracy in 
the measured location of tree stems. Employing detailed national spa
tial datasets, such as those used here (DSM-DTM raster, maps of 
buildings, land use and land resources), increases reliability. As men
tioned before, the ALS dataset might lead to less reliable estimates of 
CD due to inaccuracies in individual crown delineation. In addition to 
the reliability of estimated tree attributes, validity assessment should be 
applied when the routines to model tree attributes from spatial data do 
not strictly follow the i-Tree Eco guidelines (i-Tree Eco Field Guide 
v6.0, 2019). We diverged when modelling CLE, but discussed the 
methodology with i-Tree Eco developers who confirmed the suitability 
of the method. The impact of uncertainties in modelled attributes on the 
reliability of ES indicators estimated by i-Tree Eco remains to be ex
plored in further research. 

In addition to complementing manual field measurements, geospa
tial methods open possibilities for estimating tree attributes which are 
difficult to measure in the field, and thereby enable valuation of ben
efits which are unevenly distributed in space. Across urban areas, the 
supply of regulating ES such as air pollution removal by urban trees has 
been shown to vary and may be limited relative to total air pollution 
emissions of cities (Baró et al., 2015). Escobedo and Nowak (2009) 
documented the importance of micro-scale meteorological data for as
sessing air pollution removal by trees. Yet, the i-Tree Eco model does 
not enable spatial differentiation of air pollution levels and requires 

practitioners to assign average levels to all trees. In this study, we have 
demonstrated the importance of taking of air pollution into con
sideration. Air pollution removal constitutes the largest proportion 
(93.5 %) of the annual monetary value of an average tree. Air pollution 
level at tree location is one of the main determinants of trees’ asset 
value. 

To estimate ES provided by the entire urban forest with i-Tree Eco, 
sample inventory is usually adopted due to high costs of complete in
ventories (i-Tree Eco Field Guide v6.0, 2019). However, the sampling 
approach only enables estimating ES indicators and associated mone
tary values at an aggregate level and prevents from utilizing the outputs 
e.g. for detailed urban planning purposes where individual trees need to 
be assessed. Complete substitution of manual field surveys with geos
patial methods-based surveys enables quantifying ES of the entire urban 
forest while maintaining the possibility for spatially disaggregate out
puts. In places where high-resolution remote sensing and auxiliary 
spatial data are not available to identify all tree attributes required by 
empirical ES models like i-Tree Eco, practitioners can nevertheless infer 
the likelihood of individual tree attributes and monetary values with 
available data and methods using BN. We observed that CA, here de
rived from the ALS dataset, explains a large part of the variation in 
annual monetary values across genera (Fig. 7). Using the value of in
formation analysis in the BN (Fig. 9) we also found indications that 
attributes derived directly from ALS (CA) and auxiliary spatial datasets 
(H) or derived indirectly from other attributes (DBH) (upper part of  
Table 1) can be better proxies of asset value than tree species (measured 
in a manual survey) and may be therefore sufficient for aggregate va
luation of municipalities trees for awareness-raising and accounting 
purposes. For individual tree appraisal purposes using tools like VAT03 
(Randrup et al., 2003), manual surveying of tree species is still needed, 
but we argue that it may not be necessary when answering questions at 
a population level. The most accurate total asset value could be ob
tained by inferring each tree’s asset value using BN with observable 
attributes of each tree from a GIS platform. BN models implemented in 
GIS are becoming available in commercial software (Landuyt et al., 
2015). In Oslo, the ALS dataset represents the entire urban forest. Due 
to missing spatial data enabling species recognition we however uti
lized only a small fraction of the total 402 610 tree records. With a more 
representative sampling of all trees on both private and public land 
combined with a BN model implemented in GIS, it should be possible to 
obtain individual estimates of regulating ES for each tree in the city. 
Further research should address how inferring ES indicators for in
dividual trees based on the sample modelled in i-Tree Eco could com
plement ground-based tree valuation methods of structural and amenity 
values such as VAT, CAVAT and CTLA. 

We have tested a low-cost desk-based approach to estimating the 

Table 1 
Input data and methods for tree attribute estimation and use of tree attributes in estimating respective ecosystem service indicators by i-Tree Eco.              

Species* DBH* CD H & HLT HCB CLE DB LU PCM 

Input data and methods for tree attribute estimation 
Geospatial methods ALS dataset   ✓       

DSM-DTM    ✓  ✓    
Building map      ✓ ✓   
Land use/Land resource map        ✓  

Statistical methods ∼ DBH   ✓ ✓ ✓     
∼ H  ✓        
∼ CD  ✓        
∼ species    ✓ ✓     

Constant         ✓ 
Ecosystem service indicators (adapted from Use of Direct Measures by i-Tree Eco (v6.0) (2018)) 
Air pollution removal ✓  ✓ ✓ ✓    ✓ 
Avoided runoff ✓  ✓ ✓ ✓    ✓ 
Carbon sequestration ✓ ✓  ✓  ✓  ✓  
Building energy savings ✓   ✓   ✓  ✓ 

* Tree species and DBH are required attributes used by i-Tree Eco to estimate missing attributes.  
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aggregate asset value of all municipal trees using machine learning 
methods. The interactive map and the BN show that there is a large 
variance in individual tree asset value, depending most on CA, and 
secondarily on DBH and H, as well as tree’s location in different pol
lution zones. Tree sizes and asset values in urban forests are not nor
mally distributed. In our testing of the BN model, the expected total 
asset value varies between 38.5–43.4 million USD depending on mod
elling assumptions about the shape and resolution of the probability 
distribution of asset value. Assuming normally distributed tree size and 
asset value, a simple multiplication of mean asset value from the sample 
over all municipal trees would lead to expected total asset value of 
about 51.7 million USD. This reflects a more general challenge in 
ecosystem accounting when inferring value from a sample of a spatially 
heterogeneous ecosystem with non-normally distributed attributes used 
for ES quantification. Varying allometric relationships have been shown 
to be a general challenge in forest inventorying at tree level using re
mote sensing data (Zapata-Cuartas et al., 2012). 

Our analysis contributes to a gap in the literature on uncertainty 
assessment in ecosystem accounting (Barton et al., 2019). The esti
mated aggregate asset value of all municipal trees is probably a useful 
first estimate for awareness-raising purposes in cities that have no 
previous valuation of regulating services from urban trees. This is the 
case of Oslo. However, the estimated ES indicators and aggregate 
monetary asset values are not sufficiently accurate and reliable to meet 
the accounting need for detecting trends in the asset value of trees. The 
differences in aggregate asset value under different modelling as
sumptions are greater than the 4-year change in urban canopy cover 
(Hanssen et al., 2019). We also tested inferring the asset value of in
dividual non-municipal trees using a Bayesian network emulating i- 
Tree Eco, based on a sample of municipal trees. We find that the 
credible intervals of individual asset value are not sufficiently accurate 
for assessing individual trees. 

5. Conclusions 

The results of this study support greater use of spatial data and 
geospatial analysis methods in i-Tree Eco implementation and more 
spatially sensitive scaling methods for determining the asset values of 
urban forests for awareness-raising purposes. To ensure broader adop
tion of these new methods by the i-Tree Eco community, further studies 
should assess the impact of uncertainties in modelled tree attributes on 
the reliability of ES indicators estimated by i-Tree Eco compared to 
manual field surveys. At the same time, this study revealed that iterated 
updating of location information and implementing i-Tree Eco with 
atypical input such as spatially disaggregated pollution data is laborious 
because it requires technical support from the i-Tree Eco team for every 
new model run. Allowing for running i-Tree Eco locally would provide 
more flexibility in customisation of input data, opening up possibilities 
for using i-Tree Eco for more advanced research such as climate or air 
pollution scenario assessment. 

The majority of attributes modelled using auxiliary spatial datasets 
(CLE, DB, LU) express trees’ spatial context, recognizing that trees’ lo
cation mediates the ecological function of a tree. We have furthermore 
highlighted the importance of considering tree location for realization 
of trees’ potential for air pollution removal. A variety of other measures 
of tree’s spatial context influence ecological function and delivery of ES 
from trees – for example, planting density and proximity to noise source 
influences noise attenuation (Davies et al., 2017; Gómez-Baggethun 
et al., 2013). The integration of geospatial analysis into ES valuation of 
individual trees opens a possibility for rapid and consistent estimation 
of spatial context attributes which are otherwise costly or impossible to 
measure manually. Further research should assess these possibilities as 
well as the impact of tree location on ES delivery. 
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