
1 
 

Title: Development of new metrics to assess and quantify climatic drivers of extreme 1 

event driven Arctic browning. 2 

 3 

List of authors: 4 

Rachael Treharne1, Jarle W. Bjerke2, Hans Tømmervik2, Gareth K. Phoenix1. 

1Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, 

Sheffield, S10 2TN, UK 

2Norwegian Institute for Nature Research, FRAM – High North Research Centre for Climate 

and the Environment, NO-9296 Tromsø, Norway 

Corresponding author: 5 

Rachael Treharne1 6 

1Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, 

Sheffield, S10 2TN, UK 

rtreharne1@sheffield.ac.uk 7 

+44(0)7788765609 8 

 9 

Keywords: Arctic, climate change, extreme events, climate metrics, browning, winter, 10 

NDVI, heathland, sub-Arctic, ericoid shrubs 11 

Type of Paper: Primary research article  12 

Treharne, Rachael; Bjerke, Jarle W.; Tømmervik, Hans; Phoenix, Gareth K..  
Development of new metrics to assess and quantify climatic drivers of Extreme event driven Arctic browning. Remote Sensing of Environment 2020 ;Volum 243. 

DOI 10.1016/j.rse.2020.111749 CC-BY-NC-ND

mailto:rtreharne1@sheffield.ac.uk


2 
 

Abstract (302 words)  13 

Rapid climate change in Arctic regions is resulting in more frequent extreme climatic events. 14 

These can cause large-scale vegetation damage, and are therefore among key drivers of 15 

declines in biomass and productivity (or “browning”) observed across Arctic regions in recent 16 

years. 17 

Extreme events which cause browning are driven by multiple interacting climatic variables, 18 

and are defined by their ecological impact – most commonly plant mortality. Quantifying the 19 

climatic causes of these multivariate, ecologically defined events is challenging, and so existing 20 

work has typically determined the climatic causes of browning events on a case-by-case basis 21 

in a descriptive, unsystematic manner. While this has allowed development of important 22 

qualitative understanding of the mechanisms underlying extreme event driven browning, it 23 

cannot definitively link browning to specific climatic variables, or predict how changes in these 24 

variables will influence browning severity. It is therefore not yet possible to determine how 25 

extreme events will influence ecosystem responses to climate change across Arctic regions.   26 

To address this, novel, process-based climate metrics that can be used to quantify the conditions 27 

and interactions that drive the ecological responses defining common extreme events were 28 

developed using publically available snow depth and air temperature data (two of the main 29 

climate variables implicated in browning). These process-based metrics explained up to 63% 30 

of variation in plot-level Normalised Difference Vegetation Index (NDVI) at sites in areas 31 

affected by extreme events across boreal and sub-Arctic Norway. This demonstrates potential 32 

to use simple metrics to assess the contribution of extreme events to changes in Arctic biomass 33 

and productivity at regional scales. In addition, scaling up these metrics across the Norwegian 34 

Arctic region resulted in significant correlations with remotely-sensed NDVI, and provided 35 

much-needed insights into how climatic variables interact to determine the severity of 36 

browning across Arctic regions. 37 
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 38 

5.2 Introduction 39 

An increase in frequency of climatic extreme events is among the most marked consequences 40 

of climate change (IPCC, 2017). In the Arctic, climate change is progressing faster than almost 41 

anywhere else in the world, especially during winter (AMAP, 2017), and increases in extreme 42 

events - particularly those associated with winter climate - are therefore being observed 43 

(Vikhamar-Schuler et al., 2016, Graham et al., 2017). Although traditionally, climate change 44 

research has focussed on changes in mean conditions, it is now recognised that extreme events 45 

can have major impacts on ecosystems (Zscheischler et al., 2014, Solow, 2017). In Arctic 46 

regions, these impacts include considerable changes in vegetation biomass, productivity and 47 

phenology (Bokhorst et al., 2008, Jepsen et al., 2013, Reichstein et al., 2013).  However, proper 48 

quantitative understanding of the climatic drivers that cause these extreme event impacts is 49 

currently lacking, since research has so far focussed on an ‘impact orientated’ approach, where 50 

ecological consequences are studied in detail, while climatic drivers are generally defined in 51 

qualitative, descriptive terms.  52 

 53 

This is of concern since extreme events linked to winter climate change are already causing 54 

major disturbance in the form of sudden mortality and extreme stress in widespread Arctic and 55 

sub-Arctic vegetation, with the potential to cause large scale and magnitude impacts, such as 56 

the record low productivity of the Nordic Arctic Region (NAR) observed in 2012 (Bokhorst et 57 

al., 2009, Bjerke et al., 2014, 2017). Such events include, for example, transient periods of 58 

extreme winter warmth, leading to premature dehardening and frost damage (extreme winter 59 

warming), or exposure to cold, wind and irradiance following loss of snow cover, leading to 60 

severe desiccation damage (frost drought). These are important drivers of ‘Arctic browning’, a 61 

decline in biomass and productivity observed across Arctic regions in recent years (Epstein et 62 
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al., 2015, 2016, Phoenix & Bjerke, 2016). However, although remotely sensed Normalised 63 

Difference Vegetation Index (NDVI) has been used to assess the extent and impacts of extreme 64 

events identified during field studies (Bokhorst et al., 2009), detecting events using this 65 

approach is challenging (Treharne et al., 2018). Methods to quantitatively define climatic 66 

drivers of extreme event driven browning are therefore needed before the contribution of 67 

extreme events to remotely-sensed vegetation change across Arctic regions can be fully 68 

determined.  69 

 70 

Extreme events are typically defined using climatological thresholds or using an impact-71 

orientated definition (van de Pol et al., 2017). The latter approach may define an extreme event 72 

as one where the ability of an organism to acclimate is substantially exceeded (Gutschick & 73 

BassiriRad, 2003) or as a climatologically rare event that alters ecosystem structure or function 74 

outside the bounds of normal variability (Smith et al., 2011). Impact orientated definitions are 75 

commonly used for ‘compound events’; events driven by combinations of interacting variables 76 

which separately may not trigger an extreme response, but, together, cross ecological 77 

thresholds to trigger an extreme response (van de Pol et al., 2017). Extreme climatic events 78 

which drive Arctic browning, such as frost drought and extreme winter warming, are examples 79 

of compound events. These events have therefore so far been defined by their biological 80 

impacts; most clearly vegetation mortality (Bokhorst et al., 2011) or a marked visible stress 81 

response indicated by persistent anthocyanin pigmentation (Bjerke et al., 2017). 82 

 83 

Events such as these which are defined by an ecological impact and driven by a combination 84 

of multiple climatic variables are especially complex to quantify, compare or predict 85 

(Easterling et al., 2000). This complexity is compounded when the physiological thresholds 86 

beyond which an extreme response is triggered are likely to differ with event timing, preceding 87 
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conditions and the occurrence of successive events (Knapp et al., 2015, Sippel et al, 2016, Wolf 88 

et al, 2016, Ummenhofer & Meehl 2017). This is particularly relevant in Arctic regions, where 89 

the depth and extent of insulating snow cover determines whether vegetation is exposed to 90 

ambient conditions such as air temperature (Williams et al., 2014; Bokhorst et al., 2016), where 91 

event timing may drastically change the conditions to which vegetation is exposed, such as 92 

light intensity, and where susceptibility to an extreme response may be heavily dependent on 93 

preconditioning, such as the duration of chilling prior to an extreme winter warming event, 94 

which could determine susceptibility to premature loss of winter freeze tolerance 95 

(dehardening).  96 

 97 

In common with much extreme event literature (Bailey & van de Pol, 2015, Altwegg et al., 98 

2017), assessment of the multivariate climatic drivers in studies of extreme event driven Arctic 99 

browning is therefore typically descriptive and unsystematic, dealing with a single event or a 100 

few, often differing, events. Nonetheless, these studies have provided critical insights into these 101 

events, including a qualitative understanding of event drivers and quantification of major 102 

impacts on vegetation growth, phenology and productivity, and on ecosystem CO2 fluxes 103 

(Bokhorst et al., 2008, 2009, 2011; Bjerke et al., 2014, 2017; Parmentier et al., 2018). However, 104 

their ability to attribute these measured responses definitively to specific hypothesised climatic 105 

drivers is limited. In addition, this approach cannot determine where response thresholds lie, 106 

or therefore predict how the severity of the browning response could scale with different 107 

climate variables, or when specific conditions might be expected to result in vegetation 108 

damage.  109 

 110 

This is of concern given the scale of observed browning impacts, which include substantial 111 

loss of biomass at landscape or greater scales (Bjerke et al., 2014, 2017) and large changes in 112 
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ecosystem CO2 fluxes with significant implications for landscape-level carbon balance. 113 

Furthermore, as the frequency of many types of extreme climatic event is predicted to increase 114 

in Arctic regions as climate change progresses, the scale and extent of these impacts are likely 115 

to increase (Vikhamar-Schuler et al., 2016, Graham et al., 2017). To fully understand how these 116 

events will influence the responses of Arctic ecosystems to climate change, a more systematic 117 

approach is needed; correlating measured response to specific, process-based climatic 118 

variables. As a first step, a framework to quantify the drivers of extreme event-driven arctic 119 

browning, and the interactions between them, is required to understand how variation in these 120 

drivers influences the severity of response in vegetation communities, and ultimately drives 121 

browning. This quantitative understanding is critical to identify the contribution of extreme 122 

events to Arctic browning trends at regional scales, and to fully understand how winter climate 123 

change will impact Arctic plant communities.  124 

 125 

Therefore, the aims of this work were to apply established ecological understanding about the 126 

drivers of specific instances of extreme event driven browning to (a) identify simple, process-127 

based, quantitative climate metrics that can be used to quantify extreme winter conditions in a 128 

systematic, comparable way and (b) assess the relationship between these metrics and changes 129 

in satellite NDVI at regional scales. The development of climate metrics initially utilised a 130 

dataset of plot-level measurements of NDVI and visible vegetation damage  across 19 sites 131 

known to have been affected by extreme winter climatic events (primarily frost drought and 132 

extreme winter warming experienced during the 2013/14 winter) and subsequent browning. 133 

Following this, national meteorological and modelled snow cover datasets were used to 134 

compare climate metrics with remotely sensed NDVI across the Norwegian Arctic region. It 135 

was hypothesised that (a) simple climate metrics will be identified that correlate with NDVI in 136 

areas known to have been affected by browning, (b) these metrics will reflect ecological 137 
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understanding about the mechanisms underlying extreme climatic event driven browning, and 138 

(c) these metrics will correlate with NDVI change at regional scales.   139 
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Methods 140 

Developing climate metrics using plot-scale analysis 141 

Plot-level NDVI  142 

Widespread browning of evergreen shrubs across boreal and sub-Arctic regions of Norway was 143 

observed following the 2013/14 winter, attributed to extreme winter weather conditions 144 

(Meisingset et al., 2015; Bjerke et al. 2017). For this plot-scale analysis, observations of 145 

browning recorded in the growing seasons following these extreme winter conditions (2014 or 146 

2015) were collated from 19 sites (Fig. 1) in boreal and sub-Arctic Norway. The number of 147 

plots at each site ranged from 1 to 143 (with a mean of 19), with each plot measuring 1 x 1m. 148 

Replicate plots were located at least 2 m apart and were chosen to reflect the full range of 149 

observed browning, including green, healthy vegetation apparently unaffected by extreme 150 

events (control plots). Browning at the majority of these sites was driven by the extreme 151 

conditions during the 2013/14 winter, with remaining sites browned during previous winters 152 

(2011/12 at the earliest; Bjerke et al., 2014). Observations consisted of plot-level NDVI 153 

measurements and/or visual assessments of plant damage (mortality; observed as browning). 154 

NDVI measurements were taken using either digital NDVI cameras (passive NDVI sensors), 155 

in which the usual light sensor is replaced with an infrared sensor, enabling the camera to record 156 

visible light in the blue channel and near infrared in the red channel (Llewellyn Data 157 

Processing, New Jersey), or an active NDVI sensor (Greenseeker; Trimble, California). The 158 

Greenseeker NDVI sensor emits red and infrared light and measures the reflectance of each 159 

wavelength in terms of the normalized difference vegetation index (NDVI) and is mainly used 160 

in precision agriculture (Bourgeon et al., 2017) and in phenological monitoring; including of 161 

browning trends and events in the Arctic (Anderson et al. 2016; Bokhorst et al., 2018). The 162 

visual assessments of browning were recorded either as percentage cover of browned 163 
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vegetation (mortality), or the proportion of the dominant species affected by browning (own 164 

data and data provided by J. Bjerke). As NDVI and observed browning (plot survey) were 165 

significantly correlated (p < 0.05), these correlations (calculated separately across plots within 166 

each of three counties) were used to predict plot-level NDVI at plots where observed browning 167 

alone, and not NDVI, was recorded.  168 

 169 

To provide data on undamaged controls, a ‘pre-browning’ NDVI value was estimated for each 170 

site. To do this, linear regressions of NDVI and observed browning were calculated separately 171 

for each county (p < 0.05) and used to predict NDVI in vegetation with no observed browning. 172 

This approach produced ecologically sensible estimates for healthy dwarf-shrub heathland 173 

NDVI of between 0.67 and 0.75 (Street et al., 2007). At two sites, 5-6 NDVI values in adjacent 174 

undamaged vegetation (in addition to observed browning plots) were recorded; in these cases 175 

recorded NDVI values in undamaged vegetation were averaged to estimate pre-browning 176 

Figure 1: (a) Map of Norway showing locations of 19 sites (orange triangles) where extreme 
event-driven browning was observed and plot-level NDVI was measured. The Norwegian 

Arctic Region, the area used for regional level analysis, is outlined in red. This area is shown 
separately and enlarged in (b). 

(a) (b) 
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values for those sites. Pre-browning NDVI values were assigned to the growing season 177 

preceding the winter during which browning occurred (i.e. 2013 for the majority of sites). 178 

 179 

Climate data  180 

Snow depth maps of Norway with a daily temporal and 1 x 1 km spatial resolution were 181 

obtained from The Norwegian Water Resources and Energy Directorate (NVE). This publically 182 

available data is produced using the SeNorge snow model (http://www.senorge.no), which is 183 

forced by daily observations of temperature and precipitation and performs well in Norway 184 

(Saloranta, 2012).  185 

 186 

From SeNorge snow maps, daily snow depth values were extracted from each pixel which 187 

contained plot-level browning observations in the dataset described above. This data was 188 

extracted for each winter between 2011 and 2015. Daily snow depth values were then averaged 189 

for each site.  190 

 191 

Daily mean, minimum and maximum air temperature was obtained from the Norwegian 192 

Meteorological Institute via the publically available eklima.no web portal. Data for 2011 – 193 

2015 was downloaded from the weather stations closest to each site (maximum distance < 194 

25km) at an elevation of < 200m (as sites were located in relatively low-lying areas). Based on 195 

the quality and availability of air temperature data from these stations, data from 14 stations 196 

was subsequently analysed.  197 

 198 

Development of metrics 199 
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Snow and air temperature data was combined into a single dataset. Only data from the winter 200 

period was used to develop climate metrics, to avoid any confounding effect of occasional late 201 

spring or summer snowfall. To identify an appropriate window for this winter period during 202 

which snow cover and cold temperatures could reasonably be expected, and therefore during 203 

which warmth and exposure may have ecological consequences, first winter snow fall and final 204 

spring snow melt for each winter (2011/12 – 2014/15) were identified. This was done by 205 

selecting all periods of absent snow cover (0 mm snow depth) throughout the year; first winter 206 

snowfall and final spring melt were recorded as the dates following and preceding the long 207 

summer exposure period in consecutive years. Winter was thus defined from Day of Year 305 208 

(Day of Winter 1) to Day of Year 120 (Day of Winter 181 or 182).  209 

 210 

Within each winter a set of approaches were used to extract ‘events’ which may have 211 

influenced NDVI. These were ‘exposure events’ based on absent snow cover (0 mm snow 212 

depth) or ‘warming events’ based on warm winter temperatures (> 2 ˚C). A 2 ˚C threshold for 213 

warming events was chosen based on visual assessment of temperature data during warming 214 

events known to have resulted in browning, and aimed to ensure the full duration of any 215 

warming events was considered, while differentiation between short, relatively mild warming 216 

events and prolonged periods of high temperatures was facilitated by an ‘intensity’ metric 217 

(below and Table 1). Periods of exposure or warming occurring before initial winter snowfall 218 

or cold temperatures were excluded. The variables recorded for each event type were chosen 219 

based on the mechanism of damage particularly associated with either winter warming (i.e. 220 

premature dehardening and initiation of spring-like bud burst, followed by frost damage on the 221 

return of cold temperatures) or frost drought (loss of snow cover and subsequent exposure, 222 

leading to gradual desiccation as transpiration exceeds uptake from frozen or near-frozen soils) 223 

(Table 1). These two processes account for the majority of reported extreme climatic event-224 
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driven browning in mainland Norway (e.g. Hørbye, 1882; Printz, 1933; Bokhorst et al., 2009, 225 

2012; Bjerke et al. 2014, 2017). Thus, for exposure events (most likely to be associated with 226 

frost), event duration, start date and mean air temperature were recorded. For warming events 227 

(most likely to be associated with extreme winter warming), a wider range of variables, 228 

including the intensity metric, were recorded (Table 1). 229 

 230 

Using this approach, several events were extracted for each year. To select those most likely to 231 

influence growing season NDVI, up to 4 events were selected for each year. These were (a) 232 

‘Maximum intensity warming events’; the warming event with the highest ‘Intensity’ (air 233 

temperature*duration; Table 5.1), (b) ‘Temperature drop warming events’; the warming event 234 

with the greatest 24-h temperature drop following the final day of the event, (c) ‘Maximum 235 

duration exposure events’; the maximum duration exposure event (i.e. no snow cover) (d) 236 

‘Maximum warmth exposure events’; the warmest exposure (no snow cover) event.  237 
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 238 

  239 

Satellite NDVI 240 

Remotely sensed NDVI data were extracted from the publically available MOD13Q1 version 241 

6 dataset. MOD13Q1 provides level 3 16-day composites of vegetation indices at 250 m 242 

resolution in a sinusoidal projection. Tiles were downloaded for DOY 193 in 2015, the nearest 243 

date to when plot-level measurements were recorded, using USGS Earth Explorer. These tiles 244 

were re-projected to the UTM Zone 33 projection using the NASA HDF-EOS To GeoTIFF 245 

Conversion Tool (HEG) and mosaicked to encompass the full extent of plot-level data.  246 

Table 1: Variables (climate metrics) recorded for each event type (either warming events based 
on consecutive daily air temperatures of > 2˚C, or exposure events based on consecutive days 

of absent (0mm) snow cover) as extracted from snow depth and air temperature data. 

Variable Meaning Event type

Count Event duration (days).
Warming; 
Exposure 

Start date Date (Day Of Winter) of the first day of the event.
Warming; 
Exposure 

Intensity

Cumulative mean daily air temperature (˚C) linearly 
weighted by duration throughout the event. E.G. for a 
3 day event with daily mean air temperatures of 4˚C, 
6˚C and 3˚C, Value = (4*1) + (6*2) + (3*3) = 25.

Warming 

Mean snow depth Mean snow depth (mm) during the event. Warming

Mean air 
temperature

Mean air temperature (˚C) during the event. Exposure

End minimum 
temperature

Minimum temperature 24 hours following the final 
day of the event (˚C).

Warming

24 hour 
temperature drop

Difference between mean daily air temperature on 
the last day of the event and minimum air 
temperature 24 hours later (˚C).

Warming

5 day temperature 
mean 

Mean daily air temperature over the 5 days following 
the event (˚C).

Warming
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 247 

Statistical analysis  248 

Correlations between metrics representing selected events and subsequent growing season 249 

NDVI were assessed by multiple regression. Selection of metrics with high explanatory power 250 

for use in multiple regression was initially guided by tree-based regression analysis, following 251 

which interactions included in multiple regression of each event type (a – d) against NDVI 252 

were based on a priori knowledge and predictions relating to the mechanisms through which 253 

each event may cause browning (Bokhorst et al., 2008; Bjerke et al., 2017). Terms and 254 

interactions without a significant correlation with NDVI change were removed step wise. A 255 

maximum of three terms was included in each multiple regression. Plot-level and MODIS 256 

NDVI were compared by linear regression.  257 

 258 

Applying climate metrics at regional scales 259 

The Norwegian Arctic Region (Fig. 1) was selected for upscaling as a clearly definable region 260 

encompassing the majority of sites used for plot-level analysis. This area extends southwards 261 

to the Arctic Circle (66˚ 33’ N) and eastwards to the longitude of Magerøya, Finnmark (25˚ 262 

40’ E); the most northerly point of the Nordic Arctic Region (NAR, Bjerke et al., 2014).  263 

 264 

5.3.2.1 Satellite NDVI  265 

Both time integrated NDVI (TI-NDVI) and peak/maximum NDVI have been widely used in 266 

Arctic vegetation studies (Stow et al., 2004). The TI-NDVI is considered as a robust proxy for 267 

total growing-season productivity (Stow et al., 2004; Epstein et al., 2017). Remotely sensed 268 

NDVI data were extracted from the publically available MOD13Q1 version 6 dataset described 269 
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above from the beginning of May (DOY 129) to the end of August (DOY 241). Tiles were 270 

extracted for this period in 2014, as the most marked and widespread browning observed at 271 

plot-level occurred during the 2013/2014 winter, and from 2005 to 2010 (inclusive) to create a 272 

baseline period for comparison. Tiles were re-projected and mosaicked as described above. 273 

Unvegetated areas (NDVI < 0.12) were masked out. Images were aggregated (by mean) to a 1 274 

km resolution to facilitate comparison with climate data.  275 

From this May-August NDVI dataset, time-integrated NDVI (TI-NDVI; the sum of NDVI 276 

values during this period) was calculated for 2014 and the 2005-2010 baseline period. Change 277 

detection was then carried out between 2014 and the 2005-2010 baseline period, producing TI-278 

NDVI change. This process was also carried out for mean July (approximately peak biomass) 279 

NDVI. 280 

 281 

Climate data  282 

Data was obtained from The Norwegian Water Resources and Energy Directorate (NVE) and 283 

the Norwegian Meteorological Institute as described above. To provide air temperature data 284 

continuously across the Norwegian Arctic region, data was downloaded from every Norwegian 285 

Meteorological Institute weather station with an elevation of < 200m in the counties of 286 

Nordland, Troms and Finnmark; a total of 77 stations.  The 200m cut-off was used since above 287 

this, weather stations tended to be on mountainsides, where data may be less representative of 288 

the broader surrounding landscape and so be less suitable for interpolation (the majority of the 289 

heathland vegetation typically affected by browning is in low lying regions). Mean daily air 290 

temperature from each station was interpolated across these three counties using Inverse 291 

Distance Weighted interpolation, before the resulting air temperature map was cropped to the 292 

Norwegian Arctic region. Climate data (both air temperature maps and SeNorge snow maps) 293 
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were resampled using nearest neighbour assignment resampling to correspond to each other 294 

and to MODIS data.  295 

 296 

Climate metrics  297 

Maximum intensity warming events and maximum duration exposure events were chosen to 298 

investigate further in this analysis due to their high explanatory power in the plot-level analysis. 299 

Extreme event metrics for these two event types were calculated as described above for the 300 

2013/2014 winter within each 1 km pixel.  301 

 302 

Statistical analysis  303 

Multiple regressions of the parameters for each event type were carried out using Generalised 304 

Least Squares against TI-NDVI change. This was also done for July NDVI change (change in 305 

mid-season NDVI). All regressions were carried out at a 4 km resolution to reduce 306 

computational intensity. As the Moran’s I test indicated significant spatial autocorrelation in 307 

model residuals, this was accounted for by using correlated error structures (exponential, 308 

Gaussian, linear, spherical and rational quadratic) and selecting the appropriate model error 309 

structure (rational quadratic for TI-NDVI and exponential for July NDVI) according to the AIC 310 

criterion (Burnham & Anderson, 2002).   311 
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Results  312 

Climate metrics in plot-scale analyses  313 

Climatic events described by simple metrics were well correlated with plot-level NDVI. 314 

‘Maximum intensity warming events’ were calculated as the greatest value within a pixel of 315 

sum of daily mean air temperature multiplied by event duration (i.e. intensity) in periods of 316 

consistently warm (> 2˚C) winter air temperatures. The start day in winter, mean snow cover 317 

and intensity of these events explained more than 60 % of variation in plot-level NDVI in 318 

multiple regression (Fig. 2a; F = 14.26, D.F. = 4, 27, p < 0.001, R2 = 0.63), with high intensity, 319 

later start day and lower mean snow cover corresponding to lower NDVI values. ‘Temperature 320 

drop warming events’ were calculated as the periods of consistently warm air temperature (> 321 

2 °C) with the greatest drop in temperature during the 24 hours following the final day of the 322 

event. The start day and intensity of these events explained almost 50% of variation in NDVI 323 

in multiple regression (Fig. 2b; F = 10.81, D.F. = 3, 33, p < 0.001, R2 = 0.45). Again, high 324 

intensity and later start day were associated with lower NDVI. For both warming event types 325 

(maximum intensity warming events and temperature drop warming events) there was a 326 

significant interaction between intensity and start day (p < 0.05). Tree-based regression 327 

analysis (supporting information) of metrics calculated for warming events also highlighted the 328 

24-h temperature drop following an event as a metric with high explanatory power for variation 329 

in NDVI; mean NDVI in plots which had experienced a maximum intensity warming event 330 

with a 24-h temperature drop of more than 5.7 °C was 0.2 (NDVI) lower than in those which 331 

had not. While the importance of the 24-h temperature drop is of interest and provides some 332 

insight into mechanisms underlying plant damage following warming events, its computational 333 

complexity (in particular its use of minimum as well as mean air temperature datasets) meant 334 

that it was unsuitable for further analysis within this work and was therefore not included in 335 

multiple regression analyses. 336 
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 337 

‘Maximum duration exposure events’ were calculated as the periods of consistently absent 338 

snow cover (0 mm snow depth) with the longest duration in days during winter. The start day 339 

of and mean temperature during these events were highly correlated with NDVI in multiple 340 

regression (Fig. 3a; R2 = 0.61, F = 17.87, D.F. = 3, 29, p < 0.001). ‘Maximum warmth exposure 341 

events’ are the periods of consistently absent snow cover with the highest mean temperature. 342 

The start day and duration of these events were also significantly correlated with NDVI in 343 

multiple regression, albeit with a weaker R2 (Fig. 3b; F = 3.802, D.F. = 3, 29, p < 0.05, R2 = 344 

0.21). In both cases there was a significant interaction between the two model predictors (start 345 

day and mean temperature).  346 

 347 

p < 0.001 
R2 = 0.63 

p < 0.001 
R2 = 0.63 

(a) (b) 

Figure 2: Correlations between plot-level NDVI as predicted by multiple regression models and plot-
level NDVI observed in the field. Correlations are shown for (a) ‘Maximum intensity warming events’ 

and (b) ‘Temperature drop warming events’. Points are coloured according to the value of residuals; 
warm colouring indicates that multiple regression predicted higher NDVI values than were observed in 

the field, while cold colouring indicates that multiple regression predicted lower NDVI values than 
observed. 
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 348 

 349 

Climate metrics in regional scale analyses 350 

 351 
Climate metrics calculated and mapped across the Norwegian ArcticNAR implicate the 352 

processes underlying frost drought and extreme winter warming in MODIS NDVI change 353 

between the 2005-2010 baseline period and 2014. They also highlight interesting 354 

characteristics of winter climate and the conditions which lead to extreme climatic event-driven 355 

browning.  356 

 357 

Event characteristics  358 

p < 0.001 
R2 = 0.61 

p < 0.05 
R2 = 0 21 

Figure 3: Correlations between plot-level NDVI as predicted by multiple regression models and plot-
level NDVI observed in the field. Correlations are shown for (a) ‘Maximum duration exposure events’ 
and (b) ‘Maximum warmth exposure events’. Points are coloured according to the value of residuals; 

warm colouring indicates that multiple regression predicted higher NDVI values than were observed in 
the field, while cold colouring indicates that multiple regression predicted lower NDVI values than 

observed. 

(a) (b) 
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Maximum intensity warming event metrics (intensity, start day and mean snow cover) show 359 

that prolonged periods of warmth during winter were rare across the Norwegian Arctic region 360 

in the 2013/14 winter (indicated by low maximum intensity across much of the region; Fig 4a). 361 

Such rare occurrence is consistent with climatic conditions which can produce an ecologically 362 

extreme response (i.e. extreme events). The median value of intensity in the 2013/14 winter 363 

was 61 across the entire Norwegian Arctic region, compared to a median of 328 specifically in 364 

observed browning sites. The wide variation inherent in this variable (with a range of 3 to 2440) 365 

across the Norwegian Arctic region means that when mapped, areas where events of especially 366 

high intensity took place – reflecting prolonged, unseasonable warmth – are clearly 367 

distinguishable by eye (Fig 4a). Visual assessment suggests that high intensity events, when 368 

they do occur, are most often found in coastal areas. Furthermore, while most warming events 369 

across the region occurred in the first half of the winter period, with 60% occurring in January 370 

alone, events with the highest maximum intensity typically began later in the season (Fig 4; 371 

best model: R.S.E = 187.24, D.F = 5265; start day: t = 9.56, S.E. = 0.07, D.F. = 5265, p < 372 

0.001). There was no significant correlation between event intensity and mean snow cover 373 

during the event. 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 
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 382 

Similarly, exposure event metrics show that exposure (snow depth = 0) during winter was 383 

relatively rare across the Norwegian Arctic in the 2013/14 winter (Fig. 5a) and was limited 384 

primarily to coastal areas. Where exposure events did take place further inland, visual 385 

comparison suggests they typically began later in the winter compared to those taking place 386 

close to the coastline (Fig. 5b). All winter 2013/14 exposure events across observed browning 387 

sites plus the majority (59 %) of exposure events across the Norwegian Arctic region were 388 

Figure 4: Climate metrics calculated for the warmth event with the highest 
intensity in each 1 km2 pixel. Climate metrics shown are (a) intensity; cumulative 

warmth weighted linearly by event duration, here rescaled to a range of 0-1 for 
easier interpretation, (b) the start day of the event (Day of Winter 1 equivalent to 
Day of Year 305) and (c) mean snow depth (mm) during the event. The change in 
time integrated NDVI between the baseline 2005-2010 period and 2014 is shown 

(d) for comparison with the potential climatic drivers (a) – (c). 
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associated with a mean air temperature of more than 0 °C during the event. However, 21 % of 389 

Norwegian Arctic-region exposure events were relatively cold, with mean air temperature 390 

below or equal to −2 °C. Visual comparison suggests these cold exposure events may be more 391 

common further inland. Timing of the longest exposure events across the region was relatively 392 

evenly spread throughout the majority of the winter period, although with a higher proportion 393 

(32 %) of events occurring in April. 394 

 395 

 396 

Figure 5: Climate metrics calculated for the exposure event with the longest 
duration in each 1 km2 pixel. Climate metrics shown are (a) event duration 
(b) the start day of the event (Day of Winter 1 equivalent to Day of Year 

305) and (c) mean air temperature (˚C) during the event. The change in time 
integrated NDVI between the baseline 2005-2010 period and 2014 is shown 

(d) for comparison with the potential climatic drivers  (a) – (c). 
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Correlation with MODIS NDVI 397 

Maximum intensity warm events: both the intensity of the event (Fig. 4a), and the mean snow 398 

cover during the event (Fig. 4c) were significantly positively correlated with change in time 399 

integrated NDVI (TI-NDVI), i.e. cooler and shorter warming events with shallower snow 400 

resulted in greater negative change in TI-NDVI. (Fig. 4d; best model: R.S.E. = 0.54, D.F. = 401 

5259; intensity: t = 2.1, S.E. < 0.001, p < 0.05; mean snow cover: t = 13.9, S.E. < 0.001, p < 402 

0.001). There was also a significant negative interaction between intensity and mean snow 403 

cover (t = -5.19, S.E. <0.001, p < 0.001) and, while the start day of the event did not have a 404 

significant main effect, there was a significant positive three-way interaction between intensity, 405 

mean snow depth and start day (Fig. 6, t = 2.56, S.E. < 0.001, p < 0.05). Overall, these terms 406 

and interactions show that increasing event intensity (greater air temperature * duration) at the 407 

shallowest snow depths results in smaller TI-NDVI reductions (Fig. 6, 25 cm line), while at the 408 

deepest snow depths increasing event intensity results in greater TI-NDVI reductions (Fig. 6, 409 

100 cm line). As winter progresses (moving left to right on Fig. 6), the slope of the relationship 410 

between TI-NDVI change and event intensity becomes more positive at any given snow depth; 411 

meaning that the threshold of snow depth above which this slope is negative increases.  412 

 413 

There was no correlation between change in peak-season (July) NDVI and any maximum 414 

intensity warm event metric. 415 
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 416 

Maximum duration exposure events: Start day of the longest exposure event (Fig. 5b) was 417 

negatively correlated with change in TI-NDVI, i.e. later longest exposure events resulted in 418 

greater negative NDVI change (best model: R.S.E. = 0.57, D.F. = 2331; start day: t = −3.91, 419 

S.E. < 0.001, p < 0.001). The mean temperature of the event (Fig. 5c) was positively correlated 420 

with change in TI-NDVI (greater negative TI-NDVI change with cooler events; t = 3.29, S.E. 421 

= 0.015, p < 0.001), while event duration (Fig. 5a) showed no correlation (p > 0.05). There was 422 

an interaction between start day and mean temperature, showing that the slope of the positive 423 

Figure 6: Three-way interaction between intensity (the sum of air 
temperature multiplied by duration for each day of the event), start day, 

and mean snow depth in multiple regression of maximum intensity 
warmth events (the warming event within each pixel with the greatest 
intensity) with TI-NDVI change. Lines illustrate relationships between 

event intensity and TI-NDVI change at snow depths of 25cm (short 
dashed line), the mean value across the Norwegian Arctic Region of 
63cm (long dashed line) and 100cm (solid line). Panels show these 

relationships at different time points during winter. 
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relationship between TI-NDVI change and mean temperature became shallower, and 424 

eventually became negative, as the winter progressed (Fig. 7 t = -3.5, S.E. < 0.001, p < 0.001).  425 

 426 

There were no correlations between any exposure event metric and change in July NDVI (p > 427 

0.05). 428 

 429 

 430 

 431 

 432 

Figure 7: Two-way interaction between the 
start day and mean air temperature of 

maximum duration exposure events (periods 
of consistently absent snow cover with the 

longest duration in each pixel). Lines 
illustrate relationships between mean 

temperature and TI-NDVI change on Day of 
Winter (DOW) 40 (December 11th; short 
dashed line), DOW 90 (January 30th; long 

dashed line) and DOW 140 (March 21st; solid 
line). 
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 433 

Discussion  434 

 435 
We demonstrate that simple climate metrics can explain variation in NDVI (vegetation 436 

greenness) in areas known to have been affected by extreme event-driven arctic browning. 437 

These process-based metrics (i) provide quantitative assessment of the climatic conditions that 438 

drive browning, and how these combine to do that, showing that periods of unusual warmth 439 

and low snow cover during winter are associated with loss of vegetation greenness reinforcing 440 

previous descriptive and qualitative assessments of the climatic drivers of browning (Hancock, 441 

2008; Bjerke et al., 2014, 2017; Bokhorst et al., 2009; Meisingset et al., 2015), and (ii) provide 442 

much-needed insight into how variation in these climate drivers influence the severity of the 443 

browning observed. This work also suggests that such metrics, easily calculated from mean 444 

daily air temperature and snow depth, could be used to assess the contribution of winter climatic 445 

extreme events to Arctic browning at regional scales, and ultimately to improve predictions of 446 

how changing Arctic winters will affect the biomass and productivity of vegetation 447 

communities. 448 

 449 

Plot-level analysis 450 

Metrics representing both maximum intensity warming events (the period of consistently 451 

warm, > 2 °C, air temperature with the highest intensity in the plot’s pixel, where intensity is 452 

the sum of daily mean air temperature multiplied by event duration) and maximum duration 453 

exposure events (the period of consistently absent snow cover, 0 mm snow depth, with the 454 

longest duration in days in the plot’s pixel) explained a high proportion of variation in plot-455 

level NDVI across observed browning sites. In analysis of maximum intensity warm events, 456 

high intensity, late start date and shallow snow depth were associated with low NDVI. This is 457 
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consistent with NDVI and biomass reductions driven by extreme winter warming or frost 458 

drought events (Bokhorst et al., 2009, Bjerke et al., 2014; Meisingset et al., 2015). In extreme 459 

winter warming, unusual winter warmth causes premature dehardening and initiation of spring-460 

like bud-burst following snow melt and exposure of vegetation to warmth, after which the rapid 461 

return of sub-zero temperatures causes frost damage (Phoenix & Lee, 2004; Bokhorst et al., 462 

2008). It is likely that vegetation could be more prone to extreme winter warming damage later 463 

in winter, after a substantial cold period has already been experienced and when light levels 464 

are increasing, meaning any subsequent warm period is more likely to trigger premature de-465 

hardening and bud-burst (Körner, 2016; Parmentier et al., 2018). Alternatively, frost drought 466 

occurs when vegetation is exposed and soils are frozen, which reduces the availability of free 467 

water and promotes winter desiccation (Tranquillini 1982; Sakai & Larcher, 2012). In late 468 

winter, soils are most likely to be closer to their coldest year-round temperature. Exposure 469 

events with a higher mean air temperature at this time may therefore encourage plant 470 

transpiration and water loss, but may not be sufficiently warm to initiate soil thaw and an 471 

increase in the availability of free water (Larcher & Siegwolf, 1987). Desiccation is likely to 472 

be further accelerated in late winter due to higher solar irradiance, which promotes 473 

physiological activity including transpiration and increasing water loss (Hadley & Smith, 1986, 474 

1989). However, since there is a high explanatory power of the 24-h drop in temperature 475 

following the end of the warm period, it appears likely that the browning observed at these sites 476 

is driven largely by extreme winter warming rather than frost drought.  477 

 478 

In analysis of maximum duration exposure events, a late start day and comparatively warm 479 

mean air temperature (1.7˚C) was associated with lower plot-level NDVI, with the negative 480 

correlation between mean air temperature and NDVI steepening throughout the winter. 481 

Similarly to the above, this could either indicate frost drought or extreme winter warming. 482 
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Regardless, it would appear that periods of warmth associated with snowmelt or shallow snow 483 

depth, particularly in late winter, are strong drivers of the NDVI reductions observed at these 484 

sites. This is also consistent with observations that reductions in Vaccinium myrtillus biomass 485 

in the 2014 growing season in coastal Norway were associated primarily with winter warmth 486 

(Meisingset et al., 2015).  487 

 488 

Regional-scale analysis 489 

Climate metrics calculated for both event types – maximum duration exposure events and 490 

maximum intensity warming events – show that both prolonged, warm periods during winter 491 

and periods of winter exposure are rare across the Norwegian Arctic region; the majority of the 492 

region experienced low maximum intensity of warmth events and no periods of exposure 493 

during the 2013/14 winter. This is consistent with ecological theory that states that extreme 494 

events should be rare enough that organisms are not (or poorly) adapted to them, such that 495 

when these events do occur, an extreme ecological response is produced (Smith 2011). As 496 

might be expected, the highest magnitudes of both event types occurred primarily along the 497 

coastline, where temperatures are warmer and the climate more variable. As both mean 498 

temperatures and temperature variability are expected to increase as climate change progresses 499 

(AMAP, 2017), this suggests that coastal areas may act as indicators of conditions likely to 500 

become more common as colder, inland areas warm, and supports predictions that the 501 

magnitude and frequency of these events will increase across arctic regions as climate change 502 

progresses (Vikhamar-Schuler et al., 2016, Graham et al., 2017).  503 

 504 

Climate metrics for both event types correlated with change in TI-NDVI. For maximum 505 

duration exposure events the strongest predictor of change in TI-NDVI was mean temperature 506 

Treharne, Rachael; Bjerke, Jarle W.; Tømmervik, Hans; Phoenix, Gareth K..  
Development of new metrics to assess and quantify climatic drivers of Extreme event driven Arctic browning. Remote Sensing of Environment 2020 ;Volum 243. 

DOI 10.1016/j.rse.2020.111749 CC-BY-NC-ND



29 
 

during the exposure event. However, this relationship changes throughout the winter; the 507 

negative correlation between start day and change in NDVI (with later events associated with 508 

greater TI-NDVI reductions) is steeper where mean temperature is high. This means that early 509 

in the winter, cold exposure events are associated with greater TI-NDVI reductions, but in late 510 

winter, from around March, it is warmer events that cause larger TI-NDVI reductions. It is 511 

these late winter, relatively warm events which contribute to the largest reductions in TI-NDVI 512 

overall. Similarly to the plot-level analysis, this could suggest that in late winter, when 513 

vegetation has already experienced cold winter temperatures and light availability is increasing, 514 

warm conditions may be more likely to initiate premature dehardening, driving extreme winter 515 

warming damage (Bokhorst et al., 2010). However, there is also evidence that the impact of 516 

exposure events on change in TI-NDVI may be driven to some extent by frost drought. As 517 

described above, mild temperatures and high light levels in late winter could accelerate 518 

desiccation by encouraging transpiration and water loss before soils begin to thaw (Parmentier 519 

et al., 2018). The contrasting link between TI-NDVI reduction and colder temperatures in early 520 

winter suggest greater possibility of frost drought as the driving mechanisms of damage: in 521 

early winter when normal air temperatures are higher and soils have had little time to chill, cold 522 

exposure events may accelerate or exacerbate soil freezing (Hancock, 2008; Zhao et al., 2017), 523 

promoting vegetation desiccation.  524 

 525 

For maximum intensity warmth events the strongest predictor of change in TI-NDVI was mean 526 

snow depth during the event. Although, overall, maximum intensity warmth events with 527 

shallower snow depths were associated with greater TI-NDVI reductions, the relationship 528 

between the severity of these events and change in TI-NDVI was determined by interactions 529 

between mean snow depth, start day and the intensity of the event. In early winter, increasing 530 

event intensity was associated with greater reductions in TI-NDVI when the mean snow depth 531 
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during those events was deeper. Also, as winter progresses, the relationship between intensity 532 

and TI-NDVI becomes shallower, and by late winter increasing event intensity is associated 533 

with greater loss of TI-NDVI only at relatively deep snow depths. Overall, this shows that at 534 

low temperatures, shallow snow depth and exposure were consistently associated with greater 535 

reductions in TI-NDVI. However, these relationships may also reflect smaller impacts of 536 

increasingly severe warm spells in vegetation communities which typically experience shallow 537 

snow cover or periods of exposure during winter (for example coastal vegetation communities), 538 

compared to those where snow cover is typically deep and persistent (Bokhorst et al., 2016). 539 

This would arise where vegetation in areas with normally low snow depth may be more adapted 540 

and resilient to fluctuations in winter temperature because they typically are (more likely to be) 541 

exposed above the snow (Kudo & Hirao, 2006, Bienau et al., 2014). Increasing warming event 542 

intensity in these vegetation communities may therefore have little effect. In contrast, areas 543 

with greater snow depth may be much more sensitive to extreme temperature fluctuations and 544 

higher rates of water loss associated with exposure since here vegetation is typically covered 545 

by deep snow throughout winter, and hence is less well adapted to exposure. Further work 546 

should determine whether amount of snowmelt (i.e. initial snow depth – final snow depth) 547 

during a warming event may be a more ecologically relevant metric than mean snow depth. 548 

 549 

It is not clear why the relationship between change in TI-NDVI and event intensity is positive 550 

in late winter, even at mean snow depth (i.e. less negative TI-NDVI change with greater 551 

intensity). This may be related to the alleviation of water stress from snow melt-water, or to 552 

the impact of increased soil moisture following snowmelt on phenology (Vaganov et al., 1999; 553 

Barichivich et al., 2014). Alternatively, it may suggest that late in the winter, when mean air 554 

temperatures are beginning to increase, warming events are less likely to be followed by the 555 

rapid drop in temperature which was highlighted by plot-level analysis as an important driver 556 

Treharne, Rachael; Bjerke, Jarle W.; Tømmervik, Hans; Phoenix, Gareth K..  
Development of new metrics to assess and quantify climatic drivers of Extreme event driven Arctic browning. Remote Sensing of Environment 2020 ;Volum 243. 

DOI 10.1016/j.rse.2020.111749 CC-BY-NC-ND



31 
 

of NDVI decline. Without this temperature drop, warming in later winter may simply 557 

encourage earlier spring snowmelt and accelerate phenology, without damaging effects 558 

(Meisingset et al., 2015). However, this appears to conflict with the association between large 559 

NDVI reductions and warm exposure events during late winter, but the reason for these 560 

apparently conflicting associations is not clear.    561 

  562 

The regional-scale findings arise from analyses of change in TI-NDVI, yet regional-scale 563 

climate metrics did not correlate with change in July NDVI (approximately peak biomass, or 564 

peak NDVI). The peak season value of NDVI reflects the seasonal trajectory of photosynthetic 565 

activity and can therefore help with interpretation of TI-NDVI (Park et al., 2016). However, it 566 

is likely that the influence of altitudinal, latitudinal and coast-inland variability on the timing 567 

of peak NDVI, combined with detection of this from just two MODIS images within a single 568 

month, means that the genuine peak NDVI may not be well reflected in the methods used here. 569 

TI-NDVI may make for better comparison of greenness among sites that have contrasting 570 

phenology and timing of peak biomass. In addition, while winter extreme climatic events can 571 

drive extensive vegetation mortality, and therefore biomass loss, they also frequently cause 572 

severe stress and delayed phenology (Bjerke et al., 2017). Subsequent recovery from stress and 573 

catch-up in phenology and/or growth (Koller, 2011; Treharne et al., 2018), would reduce 574 

detection from peak season NDVI (Anderson et al., 2016), while the initial stress and 575 

phenology impacts would be incorporated in (and likely detected in) TI-NDVI, which 576 

correlates with total growing season productivity (Epstein et al., 2017). 577 

 578 

Plot-level compared with regional analyses 579 
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Analyses at plot-level and regional scales, combined with correlation between plot-level and 580 

remotely sensed NDVI (supporting information), indicated similar processes underlying the 581 

greatest reductions in NDVI, in particular periods of unusual warmth and exposure during 582 

winter, and especially during late winter. However, regional-scale analysis showed more 583 

complexity compared to plot-level analysis; for example with colder temperatures during 584 

exposure periods associated with greater TI-NDVI reductions in early winter. This illustrates 585 

that, while the plot-level analysis focussed on the drivers of pre- and post-damage NDVI in 586 

observed browning sites, when these drivers are scaled up to regional analysis, a wider range 587 

of processes are involved in NDVI change. As TI-NDVI reflects cumulative productivity 588 

across the May – August growing season, reductions in this indicator could reflect altered 589 

phenology, and lower productivity in otherwise ‘undamaged’ vegetation, as well as the more 590 

extreme ecological responses associated with extreme event-driven browning, such as 591 

mortality and visible stress responses (Treharne et al., 2018). Assessing this greater range of 592 

conditions driving TI-NDVI change is necessary to investigate the drivers of reductions in 593 

greenness observed at landscape to pan-Arctic scales in recent years (Epstein et al., 2015, 2016; 594 

Phoenix & Bjerke, 2016; Park et al., 2016). Nonetheless, having demonstrated that a small 595 

number of climate metrics explain a high proportion of variation in NDVI across sites affected 596 

by browning in the 2014 growing season, there is considerable potential for such simplified 597 

approaches requiring a limited range of climate datasets to attribute drivers of browning and 598 

be used in models to predict browning in the future.    599 

 600 

Conclusion 601 

This analysis has demonstrated that the severity of NDVI reductions, both across sites where 602 

browning has been observed and at a regional scale, can be related to simple, process-based 603 
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climate metrics. These metrics reinforce ecological theory about the drivers underlying winter 604 

climatic extreme event-driven browning, showing that prolonged periods of unusual warmth 605 

and vegetation exposure during winter have negative consequences for NDVI. They also 606 

provide novel and much-needed insight into how different climatological variables and timing 607 

interact to produce greater or less severe browning. Looking forward, with further development 608 

utilizing satellite data with medium to high spatial resolution like Sentinel-2 (10 meter), simple 609 

climate metrics could be used to assess the impact of winter extreme climatic event driven-610 

browning on productivity at regional scales and improve predictions of changes in browning 611 

frequency in the future.  612 

 613 

Highlights 614 

• New metrics quantified climatic drivers of extreme event-driven Arctic browning. 615 

• These metrics explained up to 63% of variation in greenness at affected sites. 616 

• Prolonged warmth or vegetation exposure in winter are associated with browning.   617 

• Event metrics correlated with satellite greenness across Arctic Norway. 618 

  619 
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