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• City-wide skin-related morbidity was
correlated to air temperatures in Oslo.

• Surface temperatures negatively corre-
lated to tree cover and NDVI.

• Counterfactual model of city tree re-
moval increases risk of human heat ex-
posure.

• Each city tree mitigates potential heat
exposure for one citizen by one day.
⁎ Corresponding author.
E-mail address: alexander.venter@nina.no (Z.S. Venter

https://doi.org/10.1016/j.scitotenv.2019.136193
0048-9697/© 2019 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 11 August 2019
Received in revised form 5 December 2019
Accepted 16 December 2019
Available online 18 December 2019

Editor: G. Darrel Jenerette

Keywords:
Ecosystem services
Landsat
Surface temperature
Heat-associated illness
Remote sensing
The predicted extreme temperatures of global warming aremagnified in cities due to the urbanheat island effect.
Even if the target for average temperature increase in the Paris Climate Agreement is met, temperatures during
the hottest month in a northern city like Oslo are predicted to rise by over 5 °C by 2050. We hypothesised that
heat-related diagnoses for heat-sensitive citizens (75+) in Oslo are correlated to monthly air temperatures,
and that green infrastructure such as tree canopy cover reduces extreme land surface temperatures and thus re-
duces health risk from heat exposure. Monthly air temperatures were significantly correlated to the number of
skin-related diagnoses at the city level, but were unrelated to diagnoses under circulatory, nervous system, or
general categories. Satellite-derived spatially-explicit measures revealed that on one of the hottest days during
the summer of 2018, landscape units composed of paved, midrise or lowrise buildings gave off the most heat
(39 °C), whereas units composed of complete tree canopy cover, or mixed (i.e. tree and grass) vegetation main-
tained temperatures of between 29 and 32 °C. Land surface temperatures were negatively correlated to tree can-
opy cover (R2=0.45) and vegetation greenness (R2=0.41). In a scenario inwhich each city treewas replaced by
the most common non-tree cover in its neighbourhood, the area of Oslo exceeding a 30 °C health risk threshold
during the summerwould increase from23 to 29%. Combiningmodelling resultswith population at risk at census
tract level, we estimated that each tree in the city currently mitigates additional heat exposure of one heat-
sensitive person by one day. Our results indicate thatmaintaining and restoring tree cover provides an ecosystem
service of urbanheat reduction. Our findings have particular relevance for health benefit estimation in urban eco-
system accounting and municipal policy decisions regarding ecosystem-based climate adaptation.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Rapid urbanisation is a global trend, which is predicted to result in
an additional 2.5 billion people living in cities by 2050 (United
Nations, 2014). In Europe, the third most urbanised region in the
world after North America and Latin America, 74% of the population re-
side in cities (Kotzeva and Brandmüller, 2016). At the same time, the ef-
fects of global warming and climate change are expected to be
exaggerated in cities, particularly with respect to extreme heat wave
events (McCarthy et al., 2010; Ortiz et al., 2019). Urbanisation is associ-
ated with the conversion of natural vegetation cover to artificial sur-
faces, a phenomenon known as soil sealing (Ludlow, 2006; Morabito
et al., 2018). These artificial surfaces change the amount of solar energy
that is absorbed and reflected relative to natural vegetation cover and
thereby lead to the Urban Heat Island (UHI) effect (Schwarz et al.,
2012). TheUHI characterises a distinct urban climatewith elevated day-
time and night-time temperatures relative to peri-urban areas (Oke,
1982). Globally, the UHI effect increases temperature by 6.4 ± 2.3 °C
(mean ± SD), although this varies between cities (Phelan et al., 2015).
Bastin et al. (2019) modelled climate in 2050 for cities worldwide
under a moderate climate change scenario assuming compliance with
the Paris Agreement. They find that Oslo's predicted climate, in far
northern Europe, would be 5.6 °C warmer in the warmest month,
with an analogue climate to Bratislava's in 2050, situated in Central
Europe.

The UHI has numerous negative effects on the urban economy, ecol-
ogy and consequent social well-being (Phelan et al., 2015). Energy de-
mands increase as buildings and city infrastructure, including water,
require cooling (Rong, 2006). Air quality is degraded as phytochemical
reactions of pollutants that produce smog in the air accelerate at higher
temperatures (Akbari, 2005). Extreme temperatures, particularly in arid
climates, expose living organisms to heat stress and can thus diminish
biodiversity, ecosystem functioning and associated ecosystem services
(Grimmet al., 2008). At extreme air temperatures, humans are at higher
risk of, for example, heart attacks and asthma, thereby increasing mor-
bidity rates among vulnerable population groups (Chand and Murthy,
2008; D'Amato et al., 2013). A study in New York estimated that the
city's respiratory disease burden would increase by $644,069 annually
in hospitalisation costs with excessive heat waves in the near future
(Shao et al., 2012). Mortality rates across Europe are significantly in-
creased during heat wave periods (Kristie and Kovats, 2006), with per-
haps themost notable being the heatwave in 2003, which led to approx.
14,000 and 2000 excess deaths in France (Pirard et al., 2005) and En-
gland (Johnson et al., 2005), respectively. Recently, Výberči et al.
(2018) estimated that the 2015 summer heat spells resulted in an ex-
cess 539 premature deaths in Slovakia alone.

Strategies to mitigate urban heat can be broadly grouped into two
categories: changes to buildings and planting vegetation (Gago et al.,
2013; Phelan et al., 2015). Building solutions can be as simple as increas-
ing city albedo through painting roofs and pavementswhite or adopting
reflective materials during construction (Akbari and Matthews, 2012;
Karlessi et al., 2009). The alternative mitigation strategy is increasing
vegetation cover primarily through green roofs and tree/vegetation
planting (Aminipouri et al., 2019; Lee et al., 2013; Pompeii et al., 2011;
Takebayashi and Moriyama, 2007). Vegetation increases the evapo-
transpiration rate of land area, and thereby absorbs heat energy from
the ambient environment because radiant energy driving the surface
energy balance is converted into latent, as opposed to sensible heat
(Rahman et al., 2017). In addition, treesmitigate heat through the shad-
ing effect whereby tree canopy intercepts solar radiation, thereby re-
ducing sub-canopy temperatures (Bowler et al., 2010). A study in New
York found that increasing vegetation was more effective at reducing
maximum daily temperatures (by 0.7 °C) than increasing surfaces
with high albedo. However, the water and energy costs associated
with planting vegetation need to be accounted for (Rosenzweig et al.,
2006). In Europe, the choice of vegetation over albedo solutions is in
alignmentwith the European Commission's recent advocacy for the de-
velopment of nature-based solutions to socio-ecological challenges as-
sociated with climate change (Commission, 2013). Developing and
conserving green infrastructure (GI) in cities, including peri-urban for-
ests, street trees and other green spaces, can prevent the loss of climate
regulation as an ecosystem service (Marando et al., 2019).

Although many studies have quantified the contribution of GI to
urban heat mitigation (e.g. Bowler et al., 2010; Coronel et al., 2015;
Escobedo et al., 2019; Marando et al., 2019), fewer have directly linked
this to the mitigation of heat-associated human health risks in a
spatially-explicit way (e.g. Harlan et al., 2012; Klein Rosenthal et al.,
2014; Jenerette, 2018; Nyelele et al., 2019). Clarifying the links between
GI, urbanheat and human health extends the reach of conventional eco-
system accounting (United Nations, 2017) beyond ecosystem services
(Heris et al., n.d.) to include ecosystem benefits of avoided human
health risk (Nyelele et al., 2019). This is particularly relevant and neces-
sary in urban areas due to the current and impending synergistic effects
of urbanisation and global warming trends. In this context, we aim to
build on previous efforts to explore a modelling approach that demon-
strates the potential for urban tree cover to reduce the risk of exposure
to heat-associated illness. Using the city of Oslo in Norway during the
summer of 2018 as amodel, we firstly explorewhether there is any em-
pirical evidence for a morbidity response to city air temperature over
time for elderly citizens, regarded as vulnerable to heat stress. We pre-
dict that the number of heat-related patient diagnoses is correlated to
monthly temperatures in Oslo. Secondly, due to the lack of spatially-
explicit air temperature data, we use satellite-derived land surface tem-
peratures to (1) quantify how temperatures are related to urban land-
scape structure and GI; (2) model urban heat under an extreme
counterfactual scenario in which all city trees are removed; (3) relate
this to the spatial distribution of elderly citizens vulnerable to heat
stress, and (4) discuss implications for modelling of health benefits in
urban ecosystem accounting in the context of predicted climate change.

2. Method

2.1. Study area

The city of Oslo is located in Eastern Norway on the Oslo Fjord (59′
55N, 10′45E). Summers are warm (July average of 18 °C) with 177
frost-free days per year, and winters relatively mild (January average
of −3 °C). The population in Oslo municipality increased by 20% be-
tween 2007 and 2018 (Oslo kommune, 2017) and is currently at
673,469 (Statistikkbanken, 2018). The Oslo built-up area (147 km2), a
sub-section of the greater Oslo municipality (454 km2), includes virtu-
ally all the city's residents, commerce and industry andwas used to des-
ignate our study area. Oslo's built-up zone (hereafter simply referred to
as Oslo) is surrounded by near continuous forest which is zoned as non-
residential and thus protected from further development
(Miljødepartementet, 2009). Tree cover is 35% of the Oslo built-up
area, with approx. 384,000 trees taller than 2.5 m (Hanssen et al.,
2019) and are composed of mixed boreal and deciduous species (Oslo
kommune, 2017).

2.2. Measuring urban heat

Urban temperatures and the UHI are often quantified using ground-
based measures of air temperature (Tair) or satellite-based measures of
land surface temperature (LST, Phelan et al., 2015). Ground-basedmea-
sures of Tair are arguably more relevant to human health because they
are more closely related to “perceived temperature” (Sheng et al.,
2017) and are better at capturing night-time UHI, where mortality risk
can be as significant as during the day (Pichierri et al., 2012). However,
they are seldom spatially continuous, except forwhen usingmobile sur-
veys (e.g. Ziter et al., 2019), and do not account for variation across land
cover surfaces (Marando et al., 2019). Satellite-based measures of LST
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are spatially continuous and are well-correlated to day-time Tair over
time and space (Schwarz et al., 2012; Sheng et al., 2017; Tan et al.,
2017), and have thus been widely used in assessments of UHI
(Mirzaei, 2015). Given the reasonable correlation between LST and
Tair in urban areas, LST has been successfully used in spatially-explicit
epidemiology studies before (Kestens et al., 2011; Laaidi et al., 2012).
In this study we use both Tair and LST data to achieve two related but
distinct aspects of our study. Tair was used in relation to city-level
monthly health statistics in Oslo due to its comprehensive temporal
coverage. LST was used in relation to GI and, in a counterfactual model-
ling scenario, to the distribution of heat-sensitive citizens, due to the
comprehensive and high-resolution spatial coverage of LST
measurements.

All remote sensing data retrieval, processing and analysis were im-
plemented within the Google Earth Engine (GEE) cloud-computing
platform (Gorelick et al., 2017). Land surface temperatures were de-
rived from Landsat 8 OLI/TIRS sensors using the single-channel algo-
rithm developed by Jimenez-Munoz et al. (2009), which produces a
root mean square error of 1 K when compared with reference tempera-
ture data. Four cloud-free Landsat scenes captured at 10 am covering
the Oslo municipality during the summer of 2018 were selected for
analysis. We derived at-sensor thermal radiance from the first thermal
infrared band in the orthorectified USGS Landsat 8 Raw Scenes Tier 1
collection after radiance calibration and bicubic resampling from
100 m to 30 m resolution. Brightness temperatures were obtained
from the USGS Landsat 8 Tier 1 TOA Reflectance collection. The USGS
Landsat 8 Surface Reflectance Tier 1 collection, which has been
orthorectified and atmospherically corrected to obtain surface reflec-
tance, was used to derive emissivity from the normalized difference
vegetation index (NDVI) (Tucker, 1979) according to methods outlined
in Sobrino et al. (2004). Atmospheric water vapour content was calcu-
lated using the total column water vapour data from the National Cen-
ters for Environmental Prediction and the National Center for
Atmospheric Research (Kalnay et al., 1996).

Daily mean air temperature (Tair) data were collected from 11
weather stations owned by the Norwegian Meteorological Institute
which were spread across the urban extent of Oslo (Fig. S1). We ex-
tracted mean LST from the four available Landsat scenes for various
land cover classes within a 500 m radius buffer of each weather station
and produced linear regressions per land cover class to explore the cor-
relation between LST and Tair.

2.3. Land cover classification

The satellite data for land cover classification included Sentinel-1
Synthetic Aperture Radar (S1), and Sentinel-2Multispectral Instrument
(S2) imagery over 2017 and 2018. Radar and optical data are collected
at different electromagnetic wavelengths that interact with surface
characteristics in different ways, and thus the fusion of S1 and S2 data
has been shown to enhance land cover classification accuracies
(Carrasco et al., 2019). S1 radar data from the dual-polarised C-band
are radiometrically calibrated, orthorectified and corrected for terrain
using SRTM30 (Farr and Kobrick, 2000) by GEE and provided as the
level-1 Ground Range Detected product at 20 m resolution. We used
the vertical transmit/receive (VV) and dual-band co-polarisation with
vertical transmit and horizontal receive (VH) for both ascending andde-
scending orbit passes. We calculated temporally aggregated median
composites for all S1 imagery during spring (day-of-year 90–130), sum-
mer (170–210) and autumn (320–360), as well as the standard devia-
tion over the entire time period. We used S2 top-of-atmosphere
reflectance data with level 1C processing that have been orthorectified
and radio-corrected by GEE and provided at 10 m resolution. We ex-
cluded scenes with a cloud pixel percentage of N30% and applied an au-
tomatic cloud masking procedure using the QA60 band, masking both
opaque and cirrus clouds (Zhu et al., 2015). Median temporal compos-
ites were extracted for visible, near infrared and both short-wave
infrared bands alongwith spectral indices includingNDVI, the enhanced
vegetation index (Jiang et al., 2008), soil-adjusted vegetation index
(Huete, 1988), and the index-based built-up index (Xu, 2008).

To classify the land cover of Oslo municipality (including the built-
up zone and surroundingMarka peri-urban forest),we randomly gener-
ated 20,000 sampling points within the municipality bounds and man-
ually classified the land cover at each location as grass/shrub, tree,
paved or impervious surfaces, and water. The aforementioned satellite
data were extracted for each of the sampling points, and the resulting
dataset was split into a training (70%) and testing (30%) set used to
build and evaluate a Random Forest model (Breiman, 2001) for pixel-
based image classification.

Following the satellite-based land cover classification, we imple-
mented the STructure of Urban LAndscapes (STURLA) classification
using methods outlines in Hamstead et al. (2016). Urban landscapes
are complex with functional properties (e.g. UHI mitigation) that are
linked to the heterogeneity of landscape elements or structures
(Cadenasso et al., 2007). The aim of STURLA is to capture this heteroge-
neity in a reproducible way so as to characterise variations in landscape
function, specifically intra-urban heat island effects. STURLA generates
composite land cover classes, which represent various combinations of
built and natural features. These are then used to examine the response
of a landscape function, which in this case is surface temperature. The
basic land cover product is enriched with building type cover including
lowrise (1–3 stories), midrise (4–9 stories) and highrise (N9 stories).
We used building footprint and LiDAR-derived 1 m digital elevation
data provided by theNorwegianMappingAuthority to calculatemedian
building height for each building polygon in Oslo. We overlaid this on
the land cover dataset, and then summed the pixels for each structural
class intersecting each 30 × 30m analysis unit. Our implementation dif-
fered from that of Hamstead et al. (2016) in that we used a lower reso-
lution satellite-derived land cover dataset (see methods above) which
excluded the “bare earth” land cover class. We then generated a
STURLA class type for each analysis unit based on the unique combina-
tion of land cover classes within it. LST values for the top 21most abun-
dant STURLA classes were extracted.

2.4. Tree canopy cover and NDVI

MedianNDVI valueswere calculated from S2 imagery over 2017 and
2018. NDVI is a good indicator of vegetation cover (Cawkwell et al.,
2016), and thus urban GI; however, it does not differentiate between
trees, shrubs and grass. Given that trees are arguably the most impor-
tant GI contributing to urban ecosystem services (Roy et al., 2012), we
used Hanssen et al. (2019) tree canopy data for Oslo. Briefly, Hanssen
et al. (2019) used LiDAR data to segment tree canopy objects using a
watershed segmentation algorithm (Hyyppä et al., 2008; Suárez et al.,
2005). The resulting tree canopy objects were counted per municipal
district for later use in the ecosystem service accounting. Tree canopies
were also rasterised to calculate fractional tree cover per 30 × 30m LST
analysis unit. Although the STURLA model produces temperature mea-
surements per land cover class, this result is categorical and assumes a
linear relationship between fractional tree cover and LST. To test this
we regressed both NDVI and fractional tree cover on LST for all analysis
units (30 × 30 m pixels) in the city.

2.5. Ecosystem service model

Our approach maps to the first steps of the ecosystem services cas-
cade framework (Fig. 1; Haines-Young and Potschin, 2010). The ecosys-
tem function of tree canopy is defined as the reduction in land surface
temperature (LST). The ecosystem service is the reduction in potential
heat-risk person days (HRPD), relative to a counterfactual scenario of
removal of all tree canopy. Although this counterfactual scenario is
highly unlikely at the city level, complete or partial tree removal at
local property scales might occur (Ossola and Hopton, 2018). Extreme



Fig. 1. Conceptual framework describing the ecosystem services cascade used in this study. Greyed out blocks indicate end points that were not estimated in this study but hold potential
for future research. Acronym definitions are as follows: STURLA - STructure of Urban Landscapes; LST – land surface temperature; HRPD – heat risk person days; QALYs - Quality Adjusted
Life Years; VOSL - Value of Statistical Life.
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scenarios also provide a useful and intuitive way to account for and
communicate the ecosystem service provided by GI in a city. Further,
previous studies employing conservative counterfactual scenario
modelling of tree canopy (e.g. Nyelele et al., 2019) fail to observe and
communicate heat-related health effects. Ecosystem benefits are de-
fined as the reduction in morbidity and mortality based on epidemio-
logical models in the actually exposed population of elderly per unit of
tree canopy cover (Fig. 1).

In the absence of Norwegian guidelines, we adopted a threshold
outlined in the heatwave plan for England (Public Health England,
2018), defining high risk days requiring specific actions targeted at
high risk groups as days when surface air temperatures exceed 30 °C.
We found supplementary evidence to support the 30 °C threshold in a
study informing the Emergency Department of Australia (Luther et al.,
2016). They found that heat-related illness presented in patients
when temperature thresholds reached 25 °C (based on three-day day-
time average and temperature at time before patient presentation)
and increased significantly at 30 °C (Luther et al., 2016). The heatwave
plan for England (Public Health England, 2018)mentions several special
groups at higher risk of heat-related illnesses, older citizens (N75 years)
being among the most vulnerable. As the world's population is rapidly
ageing (United Nations, 2013), prevention of heat-related illnesses
among elderly is especially important. For the present purpose of ex-
ploring a method to illustrate how trees may mitigate heat stress, we
have chosen to restrict the study to the older part of the population. Al-
though we did not use a three-day temperature average, Luther et al.
(2016) did not restrict their analysis to the high risk group of elderly cit-
izens, as we did. Thus, we do not find it unreasonable to expect that
single-day temperatures exceeding 30 °C would place elderly citizens
at risk. Therefore, because LSTs exhibit an approx. 5 °C upward bias rel-
ative to Tair (Fig. S1) we settled on 30 °C as the LST threshold in our
study.

Although results will vary with alternative thresholds, our analysis
stands as a proof-of-concept which may be expanded on to include
other age cohorts as well as critical temperature thresholds in the
future.

We mapped the distribution of vulnerable persons by summing cit-
izensN75 years old usingdistrict level census data (Fig. S2A). Using daily
meteorological data, we interpolated Landsat LST data for each day over
the summer based on linear regressions found in Fig. S1. We then
summed the number of days exceeding 30 °C (high-risk days) in 2018
per pixel and calculated the mean for each census district. This was re-
peated for the scenario in which all trees were removed, barring sec-
tions of the municipality zoned as protected forest, and replaced with
the predominant non-tree land cover, and associated LST, within each
30 × 30 m analysis unit and its immediate neighbours. The potential
HRPD were calculated by multiplying the number of at risk citizens by
the number of high-risk days (Fig. S2). We assumed no heat mitigation
by air conditioning, as this is rare in private homes in Oslo. We scaled
the ecosystem service provided per tree as the difference between
HRPD for a district without and with trees divided by the number of
trees in that district. We expressed the ecosystem service on a per tree
basis tomake the otherwise unrealistic and extreme counterfactual sce-
nario (i.e. it is unlikely that all trees will be removed from a
neighbourhood) more relevant to local scale policy decisions where
complete tree removal is possible.

2.6. Morbidity statistics

To explore the empirical evidence for the relationship betweenmor-
bidity and urban heat, we collected publicly available health statistics
for citizens N70 years old from the Municipal Patient and User Register
(KPR) and the Norwegian Patient Register (NPR) (“Helsedirektoratet,”
2019). Data is reported in 10 year age brackets, therefore we used age
brackets above 70 years as the closest approximation to the N75 age
threshold used in the England heat wave action plan. The KPR provides
among other things freely downloadable monthly anonymous data on
patient visits to doctors (general practitioner and out-of-hours appoint-
ments) between 2017 and 2019, aggregated to city borough units. The
NPR provides data in the same way on patient admissions to hospitals
between 2013 and 2019 per tertiary aggregated to the city municipal
level. To utilize both datasets and relate to city-level Tair data, we aggre-
gated data up to city level means. We selected data for health problems
related to heat stress (Bunker et al., 2016), which included diagnoses
under the circulatory, nervous system, and skin categories. Using Tair
data over the same period, aggregated along with health statistics to
monthly means at the city level, we assessed the relationship between
Tair and patient admissions, stratified by diagnosis type. We used linear
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mixed-effects modelling (Harrison et al., 2018) with the ‘lme4’ package
in R (Bates et al., 2014), using the Rstudio software. Tair and diagnosis
type were assigned to fixed effects and date was included as a random
effect to account for non-independence of repeated measures. The
models were run with ‘REML = False’ and significance was tested by
running an ANOVA on the resulting model.

3. Results

3.1. Morbidity and air temperature

Oslo municipality currently contains approx. 30,000 elderly citizens
(N75 years old) who are potentially at risk for heat-associated illnesses.
The number of visits by elderly citizens to hospitals and general practi-
tioners (including out-of-hours appointments) was not correlated with
monthly temperatures for general diagnoses (χ2(1) = 2.2.94, p =
0.09), or diagnoses relating to the circulatory (χ2(1) = 0.59, p =
0.44) or nervous system (χ2(1) = 3.32, p = 0.07) (Figs. 2, S3 and S4).
However, patient admissions with skin and subcutaneous tissue disor-
ders spiked during summermonths (Figs. S3 and S4) andwas positively
correlated to Tair over time (χ2(1) = 39.17, p b 0.0001) (Fig. 2).

3.2. Land cover and land surface temperature

The satellite-based land cover classification model produced an
overall accuracy of 88% (Table S1). When enriched with building height
data, we found that Oslo built-zone is dominated by paved or impervi-
ous surfaces (50%), whereas GI, including trees (19%) and grass/shrubs
(10%), accounts for nearly a third of city land cover (Fig. 3). The classifi-
cation produced 92 unique STURLA classes, and the top 21 most abun-
dant classes accounted for 96% of the cover. On one of the hottest
summer days in 2018 (3 July), these classes covered a 10 °C range in sur-
face temperatures (Fig. 4), ranging from 29 °C (pure tree canopy) to
39 °C (pure paved surface). Classes containing combinations of paved,
lowrise or midrise building cover gave off the most heat, although
grass/shrub cover was also present in the third hottest STURLA class
(Fig. 4). The coolest temperatures were measured over structural clas-
ses containing combinations of tree canopy, grass/shrub and lowrise
buildings.

3.3. Green infrastructure and ecosystem service

Surface temperatures measured on the 3 July 2018 were negatively
correlated with fractional tree canopy cover (R2 = 0.45, p b 0.001,
Fig. 5A) and NDVI (R2 = 0.4, p b 0.001, Fig. 5B). Areas with no tree can-
opy cover produced higher temperatures (37.5 °C) than those with
Fig. 2. Number of elderly patient visits to general practitioners (including out-of-hours appoin
Norwegian Meteorological Institute (MET). Patient visits are stratified by diagnosis type (g
Norwegian). Linear regression lines along with 95% confidence interval ribbons are plotted.
100% tree canopy cover (29 °C). The variance in these averages (spread
of points around trend line in Fig. 5A and B) is likely due to the variation
in non-vegetation cover within the 30 × 30 m sampling units, which is
partly explained by the STURLA classification (Fig. 4). The surface area of
Oslomunicipality exceeding the 30 °C daily heat-risk thresholdwas 23%
during the summer weeks (May to Aug) of 2018 (Fig. 5C). In the
modelled scenario where all tree cover is replaced with the predomi-
nant non-tree cover class in its neighbourhood, this areawould increase
by 6% during a summer like the one in 2018 (Fig. 5C). Using census dis-
trict as a sampling unit, removing all trees in Oslo would have increased
the mean city LST by 0.86 ± 0.03 (mean ± standard error) on 3 July
2018 (Fig. 6).

Our counterfactual analysis was based on the assumption that dur-
ing heat-risk days (temperatures N30 °C), Oslo's tree canopy would re-
duce the risk of heat exposure. Using the tree removal model with
2018 summer LSTs, we calculated that the average tree reduces the po-
tential heat exposure for the elderly by 1.3 ± 0.1 heat risk person days
(Fig. 7). For every tree removed in the city, the potential heat risk expo-
sure increases by approx. one day for one elderly person.
4. Discussion

We found partial evidence to support the hypothesis that heat-
related diagnoses for heat-sensitive citizens (75+) in Oslo are corre-
lated tomonthly air temperatures. Except for skin and subcutaneous tis-
sue disorders, data from the Norwegian KPR and NPR did not reveal any
clear pattern in hospitalisations and doctor visits that could be related to
the summer of 2018 heat wave in Oslo. Skin disorders are not the most
typical or life-threatening heat-associated illnesses (Bunker et al.,
2016), however existing allergen-related skin disorders can be intensi-
fied during heat waves (Becker and Stewart, 2011; Shahmohamadi
et al., 2011). The lack of relationship between morbidity and tempera-
ture for other diagnoses differs from the findings of several previous
studies fromaround theworld (Bunker et al., 2016). For example, recent
Swedish studies in cities climatically similar to Oslo have found an asso-
ciation between heat waves and bothmortality and psychiatric morbid-
ity (Carlsen et al., 2019; Oudin Åström et al., 2018). It is possible that the
course spatial scale of health data acquisition in Oslo (at city level) may
have masked significant relationships with air temperature that might
emerge if health statistics were geo-referenced at finer spatial scales
and higher frequencies. Since air conditioning is not so common in Nor-
wegian homes, people staying indoors in cooler conditions, avoiding
heat stress, is not a likely explanation (Kownacki et al., 2019). The rela-
tionship between outdoor and indoor temperatures is not straightfor-
ward, but without air conditioning, indoor temperatures are shown to
tments) over 2017 and 2018 against mean monthly air temperatures as derived from the
raph panels) and were obtained from the Municipal Patient and User Register (KPR in



Fig. 3. Land cover classification over the Oslo built-up zone. Land cover classes were used as inputs for the structural urban landscape (STURLA) classification, which characterises unique
combinations of land cover classes per 30 × 30 m analysis unit. Class proportions are indicated by the pie chart. A finer-scale view over the suburb of Manglerud is shown to the right.

Fig. 4. Land surface temperatures for the 21 most abundant STURLA cover classes over the Oslo built-up zone from a Landsat cloud-free scene on 3 July 2018. Proportions of landscape
elements are represented by coloured bars. Landsat 8-derived median surface temperatures for each STURLA class with standard error bars are represented by the black line, along the
right vertical axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Tree canopy cover (A) and the normalized difference vegetation index (NDVI, B) are plotted against land surface temperatures for 30 × 30m analysis unit over Oslo. Linear regres-
sion lines are plotted in red. The mean proportion of Oslo built-up zone area with surface temperatures exceeding 30 °C for each weak of the summer during 2018 (C) is increased in a
hypothetical scenario where all city tree cover is replaced with the predominant non-tree land cover within the 30 × 30m analysis unit and its neighbours. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)
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be highly correlated with outdoor temperatures, even exceeding out-
door temperatures in some cases (Kownacki et al., 2019).

Despite the apparent disconnect between morbidity statistics and
air temperatures, we did find evidence to support our hypothesis that
GI reduces land surface heat and potentially reduces health risk from
heat exposure. Urban landscape units in Oslo containing tree canopy
or some form of GI produced lower land surface temperatures com-
pared to those dominated by artificial or impervious surfaces. This cor-
roborates the general conclusion drawn from other studies that urban
GI mitigates the UHI effect (Bowler et al., 2010; Coronel et al., 2015;
Escobedo et al., 2019; Marando et al., 2019). Surface temperatures dif-
fered by 10 °C between vegetated and paved surfaces in Oslo, exceeding
the temperature difference of 9 °C observed by Hamstead et al. (2016)
in New York City. This is evidence that UHI effects and their mitigation
by GI are significant also for northern latitudes. Bymodelling Oslo's sur-
face temperatures in a counterfactual city without tree canopy cover,
some city districts are predicted to heat up by 3 °C (Fig. 6). Although sur-
face temperatures are not necessarily related to ambient air tempera-
tures (Sheng et al., 2017), this corresponds to experimental work
which shows that air temperatures in urban green spaces can be up to
5–7 °C cooler than the nearby built-up areas (Cohen et al., 2012;
Fig. 6. Land surface temperatures over Oslo built-up area (delineatedwith black line) derived fr
for land cover classes, wemodelledwhat the temperatureswould look like given a scenariowhe
m analysis unit and its neighbours (B). The potential change in temperatures with this modelle
togram represents the distribution of the valueswithin the respective image. (For interpretation
this article.)
Feyisa et al., 2014). Thus, loss of GI potentially poses a significant threat
to citizens vulnerable to heat-associated illness, particularly in light of
climate change and global warming predictions, which are set to be ex-
aggerated in cities (Bastin et al., 2019; Kotzeva and Brandmüller, 2016).

We found that each tree in Oslo mitigates the potential risk of heat
exposure for approx. One heat-sensitive person (citizens 75 and older)
by one day.We did not have spatially detailed enough health data to ex-
amine directly how doctor visits and hospitalisations varied with
neighbourhood GI during the heat wave of 2018. However, other stud-
ies have illustrated an association between land cover and temperature-
related health risk, supporting the assumption that the heat mitigation
effect of trees that we found may translate into reduced health risk
(e.g. Jenerette, 2018). Klein Rosenthal et al. (2014) showed that the
neighbourhood-level mortality rate of citizens 65 and older on days ex-
ceeding 38 °C in New York City was positively associated with percent-
age of impervious cover (inverse of vegetation cover). Similarly, Harlan
et al. (2012) found that in Maricopa County, Arizona, unvegetated area
had a weak but significant positive correlation with the odds of at least
one heat death in a census block. In these examples, the heat-associated
mortality rates are higher than background rates due to cardiovascular
or respiratory causes during hot weather (Hoshiko et al., 2010). Apart
om a Landsat 8 cloud-free scene on 3 July 2018 (A). After calculatingmedian temperatures
re all tree coverwas replacedwith the predominant non-tree land coverwithin the 30× 30
d loss of green infrastructure is averaged per administrative unit (C). Each colour bar his-
of the references to colour in thisfigure legend, the reader is referred to theweb version of



Fig. 7. Contribution of green infrastructure (individual trees) to mitigating the health risk
of heat exposure (N30 °C) for citizens N75 years old. The map depicts how much the
removal of one tree will increase the number of potential heat risk person days (HRPD),
defined as the number of days exceeding 30 °C multiplied by the number of elderly
citizens per administrative unit. The boundary of the marka forest, protected by law
from development, is delineated in green. The colour bar histogram represents the
distribution of the values within the Oslo built-up zone. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
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from the heat-risk mitigation provided by urban trees, a meta-analysis
covering data from 43 million individuals shows that city green spaces
generally reduce cardiovascular disease mortality rates through other
mechanisms including reduced air pollutants, increased social and
physical activities, and psychological well-being (Gascon et al., 2016).

Even if historicalmorbidity andmortality data reveal no correlations
with heat risk days in Oslo (Fig. 2), this is not indicative of future bene-
fits of urban heat reduction services by tree canopy. Bastin et al. (2019)
predict that by 2050, under themoderate global warming scenario sub-
ject to meeting Paris Agreement targets (TDR 4.5), Oslo will have an
analogous climate to Bratislava, Slovakia. This is equivalent to a 5.6 °C
increase in the warmest monthly temperature. Bratislava is a city with
similar population size and density and canopy cover to Oslo (Global
Forest Watch, 2019). Výberči et al. (2018) found an increase in elderly
mortality of 19.4% (95% CI 14.4 to 24.6%) for summer heat waves of
2015 for Slovakia as a whole. The heat anomalies leading to mortality
were temperature increases of 4.8–7.1 °C over two or more days.
These temperature anomalies are within the current range of tempera-
ture differentials between buildings and built land with tree canopy in
Oslo. Výberči et al. (2018) argue that equivalent heat waves to that of
summer 2015 may well lead to higher mortality rates than what was
observed due to high prior mortality from seasonal influenza. The use
of epidemiological data from analogous climate cities would seem an
important avenue of research in estimating hitherto unobserved effects
of climate change on health effects of urban heat islands.

Although there is evidence to support the promotion of GI in cities as
a regulating ecosystem service, the adoption of such knowledge into
policy and practice is typically slow (Dhakal and Chevalier, 2017). Our
findings provide an ecosystem service rationale for urban greening
and tree conservation. Combined evidence from (i) counterfactual
modelling of the impact of tree canopy on surface temperatures in
Oslo, (ii) global climate change modelling for cities, (iii) epidemiology
for a climate analogous city, (iv) experience with the rate of
implementation of nature-based solutions, and (v) the rate of growth
of urban tree canopy, make a strong case for preventive investment in
urban GI.

The European Commission is advocating nature-based solutions to
socio-ecological challenges associated with climate change
(Commission, 2013). The results reported here suggest that conserving
and planting city trees should be one of a portfolio of nature-based solu-
tions to increase climate resilience. Tree canopy cover showed distinct
advantages over grass/shrub cover in reducing surface temperatures
(Fig. 4). This corroborates evidence from the literature (Bowler et al.,
2010; Zardo et al., 2017) which shows that shade from trees is impor-
tant for lowering sub-canopy and surrounding surface temperatures,
sometimes more effectively than grass or open vegetation Further, the
adoption of nature-based solutions on a European-wide scale requires
standardized accounting of urban ecosystem services. The approach
presented here can be replicated in other cities by utilizing open-
source alternatives to the LiDAR-derived tree canopy and building
data. The Copernicus Sentinel satellites (10 m resolution) can produce
equally good estimates of GI and urban land cover compared to LiDAR
data (Hanssen et al., 2019). In this way, the ecosystem service provided
by trees can be quantified as heat risk person days per surface area of
tree canopy, and the STURLA classification (Hamstead et al., 2016) can
be implemented, albeit at a lower spatial resolution.

The ecosystem service quantification implemented here can be im-
proved upon firstly by expanding on the counterfactual modelling ap-
proach used and secondly by incorporating more relevant measures of
urban temperatures. The counterfactual modelling approach used here
assumes that tree cover replacement results in an increase in LST re-
gardless of its relative location in the city landscape. It thus neglects
the influence of landscape-scale determinants of LST including elevation
and distance from the coast whichmay result in biased estimates of LST
change in some parts of the city. Future work might benefit from
employing a more detailed model of tree replacement that takes these
landscape factors into account. In addition,we used age (75+) and tem-
perature (30 °C) thresholds from the heatwave plan for England (Public
Health England, 2018) and by the Emergency Department of Australia
(Luther et al., 2016) to define the HRPD in Oslo. It would be valable to
explore how the heat exposure riskscape and ecosystem services from
trees are valued at different temperature (including night and day
time temperatures) and age group thresholds. For example, it may be
better to use age thresholds that aremore alignedwith the age intervals
reported in the publicly available health statistics from the Norwegian
health registers.

Apart from the scope for enhancing the counterfactual models,
supplementing satellite-derived surface temperature data with
ground-level air temperature measures will more accurately model
human thermal comfort, which are particularly relevant to
predicting health outcomes (Crum et al., 2017; Shiflett et al., 2017).
Indeed, satellite-derived measures of surface temperatures are
known to exhibit positive biases (Fig. S1) relative to air temperatures
measured by weather station data (Sheng et al., 2017). Calibrating
remote sensing temperature products can now be crowdsourced
(Chapman et al., 2017) with the proliferation of low-cost, private
weather station data such as those produced by Netatmo (https://
weathermap.netatmo.com). These data give hourly time series and
may allow for the analysis of daytime and night-time cooling effects
of urban GI. This is important given that nighttime cooling effects of
green spaces can be as significant as daytime effects (Zhang et al.,
2017), and that heat-related epidemiological studies would benefit
from capturing the fine-scale temporal variability of heat effects
(Liu and Weng, 2012). Here the utility of daily satellite data like
those provided by the MODIS satellites (1 km resolution) in fusion
with 8-day 30 m resolution Landsat data becomes apparent (Weng
et al., 2014). This also allows for the analysis of inter-annual long-
term trends in UHI effects (Peng et al., 2019), which can possibly
be compared to epidemiological time series data.

https://weathermap.netatmo.com
https://weathermap.netatmo.com
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5. Conclusion

Here we integrated spatial measures of urban surface temperatures,
tree canopy cover and population demographics to model the potential
risk of heat exposure in Oslo city without trees. The modelled surface
temperature changes suggest that each tree in the citymitigates the po-
tential risk of heat exposure for approx. one heat-sensitive person
(75 years or older) by one day. The approach goes beyond traditional
urban heat island modelling by spatially-explicit modelling of an eco-
system services indicator linked to human health benefits. Themethods
presented here are generally replicable in other European cities and
could form a basis for urban ecosystem service accounting that informs
policies for nature-based solutions.
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