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The green leaves of vegetation sustain life on Earth by synthe-
sizing sugars from water and CO2 using the energy of sunlight 
and cool the surface by transpiring large amounts of water 

during this process. Their abundance is measured as the one-sided 
leaf area in broadleaf species and one-half the total needle surface 
area in coniferous species1. This varies seasonally between a maxi-
mum of 231 × 106km2 in July, when the Northern Hemisphere is at 
its greenest, and a minimum of 132 × 106km2 in January. The yearly 
average of 171 × 106km2 of leaf area found in 109 × 106km2 of veg-
etated area represents the annual average leaf area index (LAI) of 
the Earth—which is 1.57. Greening and browning are defined as 
statistically significant increases and decreases, respectively, in the 
annual average green leaf area at a location over a period of several 
years. Greening or browning could result from changes in the aver-
age leaf size, number of leafs per plant, the density of plants, the spe-
cies composition, duration of green-leaf presence owing to changes 
in the growing season and multiple cropping.

Data from satellites, available since the early 1980s, indicate 
increasing greenness over the Earth’s lands, from Svalbard to 
Australia and from Alaska to Chukotka2–7. The previously inferred 
dominant role of a CO2 fertilization effect7–11, and of indirect driv-
ers in general2,7,12–17, in the greening of the Earth raises the question 
of the role of human land use in shaping the vegetation greenness 
patterns on global lands. It may be more important than currently 
thought, for the following reasons. First, the models used in previous  

attribution analyses had rudimentary representations of evolving 
complex patterns of land-use practices (described below and else-
where18), thus downplaying the direct role of humans in greening19. 
Second, the effects of higher CO2 concentrations on plant growth20, 
outside of experimental situations, are poorly understood and—as a 
consequence—the models differ widely in their prognostications21. 
Third, deleterious effects of the loss of sensor calibration, orbital 
drift of satellites, atmospheric contamination of vegetation signals 
and disjointed stitching of data from multiple sequential sensors 
were evident in the underlying satellite data22 that were used in 
nearly all previous studies. Fourth, a recent study has shown that 
human land use is the dominant factor behind changes in woody 
and herbaceous vegetation cover23. Now that better quality leaf area 
data are available from the moderate resolution imaging spectro-
radiometer (MODIS) sensor observations1,24–26—Supplementary 
Table 1 describes the specifics of MODIS compared to advanced 
very high resolution radiometer (AVHRR) data—we aim here to 
assess the role of the direct driver, that is, human land-use manage-
ment, without recourse to models, by characterizing the greening 
patterns in ecosystems globally.

Results
The Earth is greening. According to MODIS data, one-third of the 
global vegetated area is greening and 5% is browning. This trans-
lates to a net increase in leaf area of 2.3% per decade (Fig. 1 and 
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Supplementary Table 2), which is equivalent to adding 5.4 × 106km2 
of new leaf area over the 18-year period of the record (2000 to 2017; 
Table 1). Two-thirds of this greening is from croplands and forests 
in about equal measure (Supplementary Table 3). The greening is 
prominently clustered in seven regions across six continents—most 
notably in China and India (Fig. 1), which together account for 
nearly one-third of the observed total net increase in green leaf area 
globally (China 25% and India 6.8%, Tables 1 and 2). This green-
ing is seen over 65% of the vegetated lands in the two countries 
(Supplementary Table 4).

We compare the above results to those from AVHRR data7, 
which we have recently updated using the same method described 
previously27, for completeness. AVHRR data from the comparable 
period (2000–2016) show less greening (22% of vegetated lands) 
and more browning (14%) (Supplementary Table 2). Nearly 60% 
of the net increase in leaf area is from croplands, whereas forests 
show a net decrease (Supplementary Table 3). Of the seven greening 
clusters in MODIS (Fig. 1), six approximately match to the AVHRR 
data, albeit with lower spatial extents and weaker magnitudes, 
and the sub-Saharan cluster is missing from the AVHRR analysis 

Table 1 | Net changes in leaf area (10−1 million km2) for the period 2000–2017

Forests Other woody vegetation Grasslands Croplands All vegetation

Global 16.72 11.50 7.85 17.85 53.91

By latitude

>50° S or N 4.78 3.48 0.80 2.36 11.41

25° S–50° S and 25° N–50°N 8.87 3.38 4.61 10.76 27.62

25° S–25° N 3.08 4.64 2.44 4.73 14.88

By MAT

MAT <10 °C 7.48 3.61 4.04 5.23 20.36

MAT = 10–25 °C 7.92 5.82 2.46 7.70 23.89

MAT >25°C 1.32 2.06 1.35 4.92 9.65

By ATP

ATP <500 mm 1.76 4.08 3.86 2.66 12.35

ATP = 500–1,000 mm 7.37 2.29 1.30 9.23 20.20

ATP >1,000 mm 7.59 5.13 2.69 5.95 21.35

Net changes were calculated as the difference between greening and browning for the period 2000–2017.
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Fig. 1 | Map of trends in annual average MODIS LAI for 2000–2017. Statistically significant trends (Mann–Kendall test, P ≤ 0.1) are colour-coded. Grey 
areas show vegetated land with statistically insignificant trends. White areas depict barren lands, permanent ice-covered areas, permanent wetlands and 
built-up areas. Blue areas represent water. The inset shows the frequency distribution of statistically significant trends. The highlighted greening areas in 
red circles mostly overlap with croplands, with the exception of circle number 4. Similar patterns are seen at P ≤ 0.05 and the seven greening clusters are 
visible even at P ≤ 0.01.
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(Supplementary Fig. 1a). The data from the two sensors agree on 
the magnitude of greening in China and India (Supplementary 
Table 4), probably because of the lower base LAI values (Table 2), 
larger spatial extents of greening (66 and 69%, respectively; Table 3) 
and higher relative changes in leaf area (18 and 11%, respectively; 
Table 2). Globally, LAI trends from the two sensors agree over 61% 
of the vegetated area and the disagreement is mostly in tropical 
humid areas and at Northern high latitudes, where the quality of 
the AVHRR data is poor (Supplementary Fig. 3). The full AVHRR 
record (1982–2016) shows more greening (41%) and browning 
(11%) in comparison to the shorter MODIS record, and the pat-
terns exhibit both similarities (red circles in Supplementary Fig. 1b) 
and important differences (blue circles). The two are not expected 
to be comparable, although both point to a Greening Earth2–7. These 
results are consistent with recent independent estimates of changes 
in woody and herbaceous cover23.

Human land use is a dominant driver of the Greening Earth. The 
above results provide at least four arguments in favour of a greater 
role for a direct human driver than previously thought2,7,12. First, 
cropland greening contributes the most to the net increase in leaf 
area globally since 2000 (33%, Table 1). Six out of seven greening 
clusters (Fig. 1) overlap with the areal pattern of agricultural pri-
mary productivity that has previously been derived independently28 
(Supplementary Fig. 2). Cropland greening is mainly attributable to 
the direct driver, without discounting the minor but opposing29,30 
contributions of the indirect drivers (CO2 fertilization has been 
reported to increase crop production, whereas climate change has 
been reported to increase or decrease crop yields depending on the 
location). The green revolution can be attributed to quick-growing 
hybrid cultivars, multiple cropping, irrigation, fertilizer use, pest 
control, better quality seeds, farm mechanization, credit availabil-
ity and crop insurance programmes31. Second, the suggestion that 
the CO2 fertilization effect on greening should be seen prominently 
in hot and arid environments, where water limits plant growth9,20, 
is not apparent in our analysis. Overall, greening of natural veg-
etation from these regions (a mean annual temperature (MAT) 
greater than 25 °C of 13% and an annual total precipitation (ATP) 

less than 500 mm of 27%) contributes much less than those from 
mild (MAT < 25 °C, 87%) and wet (ATP > 500 mm, 73%) climates  
(Table 1)—this is also true when Table 1 entries are adjusted for veg-
etated area in each climate class. Third, compared to indirect drivers, 
gains from cropland production in the northern temperate regions, 
which overlap with the greening patterns presented here (Table 1), 
contribute more toward explaining the increasing amplitude of the 
seasonal cycle of atmospheric CO2 concentration32. Finally, the large 
contribution of northern temperate forests to global net greening 
(16%, Table 1) indicates that large-scale tree plantations in previ-
ously low-productive areas of China and silvicultural practices in 
developed countries are important, further highlighting the role of 
the direct driver.

To further appreciate the importance of human land-use man-
agement in greening the world, we compare the trends in 11 large 
countries with sizeable populations and vegetated lands (Table 3). 
China and India stand out. They are the two most populous coun-
tries, but rank in the middle in terms of vegetated area. For this rea-
son, and also because they are situated in temperate to subtropical 
climes, they rank either in the middle (China) or towards the bot-
tom (India) in terms of annual average leaf area (Table 2). However, 
they rank at the top (and bottom) in terms of proportion of veg-
etated lands that exhibits greening (and browning; Table 3). As a 
consequence, they occupy the top ranks in terms of net increase in 
leaf area, both on an absolute and relative basis (Table 2). China 
alone accounts for 25% of the global net increase in leaf area with 
only 6.6% of global vegetated area. This is equal to the net greening 
in the three largest countries, Russia, the United States and Canada, 
that together hold 31% of the global vegetated area (Tables 1–3). 
India is similarly noteworthy. It ranks first (and last) in terms of the 
proportion of vegetated area that exhibits greening (and browning; 
Table 3). With only 2.7% of the global vegetated area, India accounts 
for 6.8% of the global net increase in leaf area, which is equal to 
that in the United States or Canada, each of which has three times 
more vegetated area. This statistic is even more remarkable consid-
ering that the annual average leaf area of India is two to three times 
smaller than that of Canada and the United States, respectively 
(Tables 2 and 3).

Table 2 | Ranking of the 11 largest countries by leaf area and its 
change during 2000–2017

Rank Annual average 
leaf area in 2000 
(million km2)

Net change in leaf 
area  
(10–1 million km2)

Net change in leaf 
area (%)

1 Brazil (29.68) China (13.51) China (17.80)

2 Russia (12.36) Russia (7.57) India (11.10)

3 United States (8.93) EU (4.02) EU (7.78)

4 Indonesia (8.69) India (3.65) Canada (7.13)

5 DRC (8.50) United States 
(3.59)

Russia (6.62)

6 China (7.64) Canada (3.35) Australia (5.62)

7 Canada (5.41) Australia (2.83) United States 
(4.55)

8 EU (5.23) Brazil (1.12) Mexico (4.07)

9 Australia (5.19) Mexico (0.96) Argentina (1.70)

10 India (3.33) DRC (0.96) Brazil (1.54)

11 Mexico (2.66) Indonesia (0.51) DRC (1.34)

12 Argentina (2.16) Argentina (0.13) Indonesia (0.83)

The following large countries were excluded because of unfavourable climatic conditions for 
vegetation growth: Algeria, Denmark (which includes Greenland), Kazakhstan and Saudi Arabia. 
The EU is included here, although it is not a country. DRC, Democratic Republic of the Congo.

Table 3 | Ranking of the 11 largest countries by vegetated land 
area and proportion of vegetated lands that show statistically 
significant trends

Rank Vegetated land area 
(million km2)

Proportion of 
vegetated lands 
showing greening 
(%)

Proportion of 
vegetated lands 
showing browning 
(%)

1 Russia (16.04) India (69.0) Brazil (11.6)

2 United States (8.91) China (65.6) Indonesia (6.8)

3 Canada (8.47) EU (51.4) Argentina (6.7)

4 Brazil (8.31) Canada (41.6) Canada (5.7)

5 Australia (7.50) Russia (38.0) DRC (4.5)

6 China (7.19) United States (33.3) United States (2.9)

7 EU (4.22) Mexico (28.4) Russia (2.7)

8 India (2.94) Brazil (25.6) Mexico (2.4)

9 Argentina (2.57) Australia (24.4) China (1.3)

10 DRC (2.28) DRC (23.7) EU (1.3)

11 Mexico (1.88) Indonesia (19.7) Australia (0.8)

12 Indonesia (1.80) Argentina (13.2) India (0.8)

The following large countries were excluded because of unfavourable climatic conditions for 
vegetation growth: Algeria, Denmark (which includes Greenland), Kazakhstan and Saudi Arabia. 
The EU is included here, although it is not a country.
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The European Union (EU) lands deserve a special mention in view 
of the prominent greening pattern in Fig. 1 (circle 3). This region, like 
China, ranks in the middle in terms of vegetated land area (Table 3)  
and average annual leaf area (Table 2) among the large countries 
studied here. Similar to China, it ranks at the top (third) in terms 
of vegetated lands that exhibit greening and towards the bottom for 
browning. These changes produce a top rank for this region for net 
increase in leaf area (third)—55% of which is due to croplands and 
34% to forests (nearly all forests are managed in the EU). Recent stud-
ies traced the greening in European semi-natural vegetation to land-
use practices, principally land abandonment and afforestation33–35. 
Brazil, on the other hand, ranks towards the bottom, because the 
greening from croplands and pastures is nearly offset by the brown-
ing of forests and cerrado23. The dominant cropland contribution to 
expansive greening in China, India, the EU and the United States, 
highlights the importance of the direct driver in global greening.

China and India lead in the greening of the Earth. We next inves-
tigated what factors explain the large-scale greening of China and 
India in the twenty-first century. Forests and croplands contribute 
42% and 32%, respectively, to the net increase in leaf area of China 
whereas croplands alone contribute 82% in the case of India (the 
contribution of forests in India is minor, 4%, and was therefore not 

discussed in detail). Focusing first on forested lands in China, we 
note an increase (or decrease) in tree (or non-tree) cover in the 
greening areas (84% of all forests and other wooded lands) and the 
opposite in the few (<1%) browning areas (Fig. 2). Forest invento-
ries reveal a 19% increase in forest area (330 × 103km2) in a single 
decade because of expanding natural forests and afforestation, in 
equal measures (Supplementary Table 5). China is implementing 
several ambitious programmes36 to conserve and expand forests with 
the goal of mitigating soil erosion, air pollution and climate change 
(Supplementary Table 6). Already a third of the 2.08 × 106km2 of 
current forests are plantations (Supplementary Table 5) with rapidly 
growing young trees that are less than 40 years old37. For example, 
the mean LAI trend (0.23 m2 per m2 per decade) for regions with a 
planted forest fraction (PFF) ≥ 10% is 53% greater than the mean 
LAI trend (0.15 m2 per m2 per decade) for regions with PFF < 10%. 
Similarly, the mean tree cover trend (6.18% per decade) for regions 
with PFF ≥ 10% is 29% greater than the mean tree cover trend 
(4.90% per decade) for regions with PFF < 10%. Other recent studies 
attest to the success of these programmes in terms of ameliorating 
land degradation38, lowering surface temperatures39 and facilitating 
carbon sequestration40, but a strain on water resources has also been 
noted41. All of this emphasizes the importance of human actions for 
the greening of the wooded lands of China.
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Fig. 2 | Trends in forests and other woody vegetation of China. a, Trend in annual average LAI of forests and other woody vegetation. b, Change in the 
fraction of tree cover in forests and areas of other woody vegetation between 2014–2016 and 2000–2002 in areas that show statistically significant LAI 
trends in a. Grey areas show vegetated land with statistically insignificant LAI trends or predominantly herbaceous vegetation. White areas depict land 
that is not vegetated. Black lines are boundaries of the first-level administrative divisions. c,d, Areal fraction of tree cover fraction (TCF) (c) and non-tree 
vegetation cover fraction (NTVCF) (d) over forests and other woody vegetation that is greater than the climatology during a particular period, that is, 
2000–2005, 2006–2011 and 2012–2016. Climatology is the mean of values from long-term observations. The colours further confine the analysis to areas 
of LAI greening (green bars), browning (browning bars) and no LAI change (grey bars).
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A recent study42 has reported browning trends in natural vegeta-
tion of India using MODIS normalized difference vegetation index 
(NDVI) data, but our reanalysis of the same data does not support 
this conclusion. The previous study42 focused exclusively on the 8% 
and 4% browning proportions in forests and other woody vegeta-
tion classes while ignoring the 19% and 48% greening proportions 
in these two classes, during the period of their investigation (2001–
2014; Supplementary Table 7). The greening proportions increase 
to 47% and 55% and the browning proportions decline to 1% and 
0.5% for the full record (2000–2017). The browning during the 
shorter period (2001–2014) spans about 42,300 km2 and is compa-
rable to the previously published42 estimate of 55,000 km2. However, 
this decreases to 5,000 km2 during the full record (2000–2017). 
Greening, on the other hand, is seven times greater (283,300 km2) 
during the shorter period and increases to being 80 times greater 
(401,800 km2) for the full record. An independent study43 of trends 
in MODIS vegetation indices confirms our results.

With regards to cropland greening in China and India, we note 
that the two countries had comparable and stable land areas under 
crop cultivation since 2000 (about 1.92 and 2.11 × 106km2, respec-
tively, Fig. 3). Still, total food production (for example, grains, 
fruits and vegetables) has increased significantly (by 35% to 40%) 
according to our analysis of data from the Food and Agriculture 

Organisation44 ((FAO); Supplementary Table 8). For example, 
the total cereal production in China has increased by 43% from 
407 × 106tonnes in 2000 to 583 × 106tonnes in 2016. Although yields 
in India are lower, total cereal production increased by 26% dur-
ing the same period (from 235 to 295 × 106tonnes). This is largely 
because of the increase in harvested area through multiple crop-
ping45 (Fig. 3), which results in the observed greening trends. 
Agricultural intensification in China and India is being facilitated 
by heavy fertilizer use46 and surface- and/or groundwater irriga-
tion47,48—the two currently rank at the top for the amount of fer-
tilizer use (Supplementary Table 7). Harvested land area at the 
global scale grew approximately four times faster than the cropland 
area since 2000 in large part due to these practices in China, India 
and Brazil45 and this is reflected in the MODIS greening patterns 
(Fig. 1). Of particular interest is the leading and impressive rela-
tive changes in agricultural production, fertilizer use and harvested 
area in Brazil; however, this is due to starting from lower base val-
ues (Supplementary Table 8). The observed large-scale greening of 
China and India is a harbinger of food self-sufficiency for 2.7 bil-
lion people in the two top ranked countries in terms of agricultural 
output (nominal gross domestic product of US$1.1 and 0.41 trillion, 
respectively, in 2015 from the agricultural sector in 2015 according 
to the CIA World Factbook).
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Fig. 3 | Leaf area trends in croplands of China and India. a,b, Trend in annual average LAI in croplands in China (a) and India (b). c–e, Ratio of harvested 
area (circle) and arable area (asterisk) with respect to 2000 values for China (c), India (d) and the world (e). The asterisk circled in red in c is an outlier. 
The vertical dash line in e indicates 2000.

Nature Sustainability | VOL 2 | FEBRUARY 2019 | 122–129 | www.nature.com/natsustain126

http://www.nature.com/natsustain


ArticlesNATurE SusTAInAbIlITy

Concluding remarks. A third of the global vegetated lands are cur-
rently greening—that is, becoming more productive—in a pattern 
that is reflective of intensive human use of land for crops and for-
ests across all continents, but most prominently in the two populous 
countries China and India. This suggests that human land-use man-
agement is an important driver of the Greening Earth2–7, accounting 
for a third, and probably more, of the observed net increase in green 
leaf area. Therefore, one of the priorities for Earth System Model 
refinement is a realistic representation of the spatio-temporal 
dynamics of key land-use practices—multiple cropping, irrigation 
and fertilizer use, fallowing and abandonment of land, afforesta-
tion, reforestation and deforestation. Although human exploitation 
of land will remain a complex dynamic endeavour, monitoring this 
using spaceborne datasets, especially high-spatial-resolution data, 
may offer insights into how this may be realistically represented in 
models. Finally, it is important to note that the gain in greenness, 
which mostly occurred in the Northern temperate and high lati-
tudes, does not offset the damage from loss of leaf area in tropical 
natural vegetation (for example, in Brazil, Democratic Republic of 
the Congo and Indonesia; Tables 2 and 3) and attendant conse-
quences for ecosystem sustainability and biodiversity.

Methods
MODIS LAI product. Collection 6 (C6, also version 6) Terra and Aqua MODIS 
LAI products (MOD15A2H and MYD15A2H) are used in this study49,50. These 
LAI datasets are provided as 8-day composites with a 500-m sinusoidal projection 
covering the whole globe. They are further refined by rigorous checking of 
the quality flags of the LAI products and of the simultaneous vegetation index 
products, following the previously described methods51. This filtering provides 
the highest quality MODIS LAI observations that minimize any residual 
contamination from clouds, aerosols, snow and shadow. The two LAI datasets (that 
is, four 8-day composites) are then combined into a 16-day composite by taking 
the mean of all valid LAIs (temporal average). They are then spatially aggregated to 
generate 0.05° data in a climate-modelling grid ((CMG); the spatial average). The 
remaining gaps, although very few, are filled using the climatology of each 16-day 
composite during 2000–2017. Finally, the annual average LAI for each 0.05° pixel is 
calculated and used in this study.

The quality of C6 MODIS LAI datasets was comprehensively evaluated against 
ground-based measurements of LAI and through intercomparisons with other 
satellite LAI products24,25. These datasets represent the latest and highest quality 
LAI products that are currently available. They result from two decades of research 
on the LAI algorithm development, testing, refinement and validation—these 
efforts are described in over 50 peer-reviewed journal articles listed at the MODIS 
Land validation website52.

AVHRR LAI3g product. We generated a new version of the LAI data (LAI3gV1) 
as part of this study based on the previously described methodology27. It has global 
coverage with bimonthly frequency and has a 1/12° spatial resolution. It spans the 
period July 1981 to December 2016. It is the longest among current LAI datasets. 
The full time series of LAI3gV1 data was generated by an artificial neural network 
algorithm that was trained with the overlapping data (2000–2016) of NDVI3gV1 
and C6 Terra MODIS LAI datasets. Here, NDVI3gV1 refers to the new version 
of the third-generation normalized difference vegetation index data provided by 
Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR53. The annual 
average of LAI3gV1 is calculated from 24 observations per year.

AVHRR LAI data prior to 2000 are not evaluated as required field data are  
not available. Ground data collected as part of MODIS validation efforts after  
2000 were used to test the quality of AVHRR LAI data and these have been 
described previously27.

MODIS land cover type product. The land cover information is provided by the 
collection 5.1 MODIS yearly product known as MCD12C154. The spatial resolution 
of land cover is 0.05° in CMG. The International Geosphere-Biosphere Programme 
(IGBP) classification types provided by MCD12C1 are aggregated into four broad 
biome types in this study—forests, other woody vegetation, grasslands and croplands. 
Forests include evergreen needleleaf forest, evergreen broadleaf forest, deciduous 
needleleaf forest, deciduous broadleaf forest and mixed forest. Other woody 
vegetation includes closed shrublands, open shrublands and woody savannahs. 
Grasslands include savannahs and grasslands. Croplands include croplands and 
mosaics of croplands and natural vegetation. A static land cover map (that is the map 
for 2007) is used to define the above-mentioned four broad biome types.

MODIS vegetation continuous field product. C6 Terra MODIS vegetation 
continuous field is a yearly product that presents a continuous, subpixel fraction  
of land surface cover with a 250-m sinusoidal projection from 2000 to 201655.  

The fraction of land surface cover has three components, which include the 
percentage of tree cover, percentage of non-tree vegetation cover and percentage of 
non-vegetated cover. The 250-m data are aggregated to 0.05° CMG in this study.

Temperature and precipitation data. Monthly 0.5° CMG temperature and 
precipitation data are provided by the University of East Anglia Climate Research 
Unit (CRU) and the latest version is CRU TS4.0156. MAT and ATP were calculated 
for each year. The climatology of the MAT and ATP is also evaluated during 
the period of 2000 to 2016. Three climatic zones were defined based on the 
climatology of MAT: (1) cool, MAT < 10 oC; (2) warm, MAT = 10–25 oC; and 
(3) hot, MAT > 25 oC. Another three climatic zones were defined based on the 
climatology of ATP: (1) dry, ATP < 500 mm; (2) wet, ATP = 500–1,000 mm; and  
(3) humid, ATP > 1,000 mm.

Data on country administrative areas. Data on country administrative areas was 
obtained from the Database of Global Administrative Areas (GADM) hosted by 
University of California at Davis (https://gadm.org/). The GADM data provide 
high-resolution shapefiles at all administrative levels, such as at the country,  
state or provincial level (https://gadm.org/). We used the latest version (v.2.8)  
in this study.

FAOSTAT database. Arable area, harvested area, cereal production and population 
were obtained from the FAOSTAT database hosted by the FAO44. Crop statistics 
(that is, arable area and harvested area) are recorded for 173 types of crops from 
1961 to 2015/2016. Arable area and harvested area shown in Fig. 3 are ratios 
expressed relative to their corresponding values in year 2000. The 2017 population 
data given by FAO are estimated based on the 2015 Revision of World Population 
Prospects from the United Nations Population Division.

Forestry inventory data of China. The forestry inventory data of China is 
provided by the State Forestry Administration of China (http://www.forestry.
gov.cn). We used forest statistics documented in the National Continuous Forest 
Inventory of China (1999–2003 and 2009–2013) to calculate the afforested area, 
and the changes in forest area and coverage. We also used the planted forest map of 
China at a 1-km spatial resolution, which was obtained from the Seventh National 
Forest Resource Inventory (2004–2008).

Calculation of LAI trends. Trends in annual average MODIS LAI (2000 to 2017) 
and AVHRR LAI3gV1 (1982 to 2016 and 2000 to 2016) are evaluated by the 
Mann–Kendall test, which is a non-parametric test to detect monotonic trend in 
time series data. We used the function ‘zyp.trend.vector’ with the Yue–Pilon pre-
whitening method provided by R package ‘zyp’ to conduct the trend test57. The 
trends with P ≤ 0.1 are considered to be statistically significant in this study. Similar 
patterns are seen at P ≤ 0.05 and the seven greening clusters (Fig. 1) are visible even 
at P ≤ 0.01.

Calculation of the net change in leaf area. Trends in annual average MODIS LAI 
were considered to be linear when we calculated net changes in the leaf area during 
the period from 2000 to 2017. The net changes in leaf area for a specific region take 
into account the effects from both statistically significant browning and greening 
areas, and set the areas with statistically insignificant trends to a zero contribution, 
as shown in equation (1):

∑=
=

A NNet leaf area changes per region Tr (1)
i

n
i i1 yr

where i represents a pixel with a statistically significant trend, n is the total 
number of such pixels in the region, Tri is the trend of a pixel, Ai is the area of a pixel 
that varies with latitudes, and Nyr is the length of the study period which is set to 17.

Growing season-integrated LAI and annual average LAI. The annual average 
LAI is used in our analyses, rather than a growing season-integrated LAI7, as it is 
better suited for our global study, in which we aimed to emphasize the importance 
of land-use management, including different cropping cycles (single/multiple) and 
temporal changes. The annual average LAI has the advantage of being simple, can 
be evaluated for all regions of the globe, including those with multiple growing 
seasons, a year-long growing season in the tropical humid forests and when the 
growing season spans two calendar years. It does not suffer from certain limitations 
of growing season-integrated LAI, namely, the subjective use of thresholds to 
define the start and end dates of a growing season and interpolation of 16-day 
composite satellite data to a daily resolution6.

Data availability
The datasets generated during and/or analysed in this study are publicly available 
as referenced within the article. All data and scripts are available from the 
corresponding author on request.
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