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Abstract 
Fauchald, P., Tarroux, A., Bråthen, V. S., Descamps, S., Ekker, M., Helgason, H. H., Merkel, 
B., Moe, B., Åström, J., Strøm, H. 2019.  Arctic-breeding seabirds’ hotspots in space and 
time -a methodological framework for year-round modelling of abundance and environmen-
tal niche using light-logger data. NINA Report 1657. Norwegian Institute for Nature Re-
search. 
 
By positioning a large number of seabirds throughout the year using miniaturized geoloca-
tors (GLS), the SEATRACK program provides a unique dataset on the seasonal distribution 
of seabirds from colonies in Russia (Barents and White Seas), Norway (incl. Svalbard and 
Jan Mayen), Iceland, Faroe Islands and the British Isles. Combining this extensive dataset 
with data on population sizes has for the first time made it possible to develop seasonal 
estimates of the spatial distribution of Northeast Atlantic seabirds. 
 
In this report, we document the workflow and methods used to develop monthly estimates 
of the distribution of seabirds from colonies covered by the SEATRACK design. The work-
flow presented here consists of three steps, starting from pre-processed GLS data. First, 
because the position data from the loggers represent “presence-only” data, it is vital to re-
move sampling biases before using the data to make interpretations of the spatial distribu-
tion. Therefore, in step 1 we developed a tailored algorithm, IRMA (Informed Random Move-
ment Algorithm), to reduce biases and fill gaps in the dataset due to various factors such as 
polar day/night, equinox and positions over land. IRMA uses available information and data 
to triangulate new positions and does ultimately provide a dataset where sampling biases 
has been reduced to a minimum. In the next step, we combined the position dataset with 
environmental data to model the habitat of each SEATRACK colony throughout the year. 
Environmental variables included remote sensing data of oceanography and primary pro-
duction, and data on bathymetry. We used standard Species Distribution Models (SDM) on 
presence-only data to model the habitat used by each SEATRACK colony in each month. 
Finally, in step 3 we combined the predictions from the habitat models with available data 
on the populations covered by the SEATRACK design to provide predictions on seabird 
spatial distribution and abundance. A colony database was compiled to address the popu-
lation sizes, and spatial analyses were conducted to justify a distance-rule for assigning the 
colonies in the colony database to the nearest SEATRACK colony. Based on the distance 
rule, we predicted the habitat for each colony covered by the SEATRACK design and 
weighted the estimates with population size. According to the distance-rule, the SEATRACK 
design covered from 74% to 96% of the Northeast Atlantic populations, depending on spe-
cies. 
 
Analyses and predictions were done for six common pelagic seabirds: Northern fulmar (Ful-
marus glacialis), black-legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge), 
Brünnich’s guillemot (Uria lomvia), little auk (Alle alle) and Atlantic puffin (Fratercula arctica). 
The resulting datasets represent monthly estimates of the number of birds from a specific 
breeding population in each cell of a 0.1° x 0.1° raster grid covering the entire North Atlantic. 
Monthly outputs were produced for each combination of species and colony, resulting in a 
dataset of more than 9619 raster maps. The gridded data are provided NetCDF files, one 
per species, and a short R-script is provided for reading, plotting and aggregating the data. 
An interactive mapping tool will be made available through the SEATRACK website. Appli-
cations for the new tool include marine spatial planning, environmental impact- and risk as-
sessments as well as assessments of seabird responses to environmental and climate 
change. 
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Foreword 
Conservation of seabirds is high on the agenda for national and international environmental 
management and organizations. In concert with climate warming, the development of ship-
ping, tourism, fisheries and oil and gas exploitation has the potential of severely impacting 
seabird populations in the Arctic. To improve marine spatial planning there is a need for 
detailed and unbiased maps of the distribution of seabirds throughout the year. This has 
been one of the goals for the SEATRACK program, and this report describes the methods 
used to provide a new map product that can be utilized by management and industries. The 
overall results from the SEATRACK program are presented in a joint report (Strøm et al. 
2019).  
 
The SEATRACK project has been funded by the Norwegian Ministry of Climate and Envi-
ronment, the Norwegian Ministry of Foreign Affairs, the Norwegian Oil and Gas Association 
and seven oil companies: Equinor, Det norske oljeselskap ASA, Eni Norge AS, Total E&P 
Norge AS, ConocoPhillips Skandinavia AS, Neptune Energy and DEA Norge AS. In addition, 
the Norwegian Coastal Administration and SEAPOP have provided funding for the develop-
ment of the map tool.  
 
The map tool has been developed using GLS data collected by the members of the 
SEATRACK consortium in seabird colonies throughout the Northeast Atlantic.  
 
 
Per Fauchald, 10 April 2019 
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1 Introduction 
Data on the spatial distribution of vulnerable marine resources are used in a wide range of 
management applications related to marine conservation, impact assessments and environ-
mental risk assessments (Hays et al. 2019). The SEATRACK program was designed and 
launched in 2014 to provide data and knowledge on the seasonal distribution of Northeast 
Atlantic seabird populations (Strøm et al. 2019). To achieve this goal, a large number of 
seabirds from breeding colonies in Russia (Barents and White Seas), Norway (incl. Svalbard 
and Jan Mayen), Iceland, Faroe Islands and the British Isles were instrumented with minia-
turized geolocators (GLS) loggers (see Fig. 1.1). The loggers use the shifting daylight (i.e. 
timing of sunrise and sunset events) to record the approximate position of the birds twice a 
day, and the large-scale approach of the program made it possible to discern the annual 
migration pattern of the different seabird populations inhabiting the area. The dataset pro-
vides new and highly valuable knowledge on the distributional patterns of seabirds (see 
http://seatrack.seapop.no), however the SEATRACK dataset also offers an unprecedented 
opportunity to develop seasonal estimates of the distribution of the populations that can be 
utilized in quantitative environmental assessments and analyses.  
 
In this report, we describe the methods used to develop unbiased monthly maps of the abun-
dance of six Northeast Atlantic populations of pelagic seabirds. The species modelled are: 
Northern fulmar (Fulmarus glacialis), black-legged kittiwake (Rissa tridactyla), common guil-
lemot (Uria aalge), Brünnich’s guillemot (Uria lomvia), little auk (Alle alle) and Atlantic puffin 
(Fratercula arctica). The methods combine position data of individual birds using GLS log-
gers, data on the marine environment, and population data from breeding colonies. Our ap-
proach includes algorithms to reduce biases and fill data gaps in the position dataset, 

 
Figure 1.1 – Sample of seabird colonies from the SEATRACK dataset used in population distribution modelling.  

http://seatrack.seapop.no/
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Species Distribution Models (SDM) to predict the habitats of the seabirds, and methods to 
link habitat maps with population data. The resulting datasets give monthly estimates of the 
distribution and abundance of breeding populations of pelagic seabirds from the Northeast 
Atlantic. The datasets can be used in environmental risk and impact assessments, the map-
ping of important and vulnerable marine areas and in the planning of marine protected areas. 
Finally, the datasets can be used to assess the responses of seabird populations to envi-
ronmental and climate change.  
 
The development of miniaturized devices for geographical positioning, has enabled re-
searchers and managers to track migrating animals throughout their life cycle. The immense 
increase in the quantity of data on the geographical distribution of individuals combined with 
increased processing capacity and development of user-friendly statistical tools for analys-
ing spatiotemporal datasets, has provided invaluable tools for the conservation of threatened 
species as well as planning of activities. However, this development has also created new 
challenges owing to the very nature of the tracking data that are nowadays collected en 
masse. The size, weight, and life duration of geolocators (light-loggers, or GLS) have made 
them particularly suited for studies about the distribution and large-scale movements of sea-
birds (Amélineau et al. 2018, Yurkowski et al. 2019). However, GLS-based positional data 
are characterized by important biases due to the impossibility to determine reliable locations 
during certain periods of the year. Such biases need to be addressed before statistical ap-
proaches, such as habitat and abundance modelling, can be implemented. Here, we pro-
pose a three-step framework that will allow to reduce the bias in the positional dataset and 
to ultimately model the spatiotemporal variation in seabird abundance (Box 1). 
 
Wildlife positional data represent “presence-only” data. This means that we know the posi-
tive presence of a bird (or animal), but we have no information of true absences. The use of 
presence-only data to predict the spatial distribution of a population is highly sensitive to 
sampling bias. For example, the assessment of the migration patterns of birds using ringing 
might be biased by the fact that the chance of recollecting a ring is higher in some areas 
than in others. Thus, a map derived from a ringing study could reveal the distribution of bird 
observers (or ring collectors) rather than the actual distribution of birds. Similarly, the lack of 
registration of positions during equinoxes and polar night/day and the removal of false posi-
tions over land represent sampling biases in the GLS dataset that might introduce severe 
biases in the interpretation of the distribution. Indeed, geolocator data is characterized by 
large gaps that are not randomly distributed, creating biases and preventing adequate sta-
tistical analyses and interpretations. To alleviate those biases, it is possible to model new 
locations that will replace the missing ones. One such approach consists in using a move-
ment model that determines plausible locations based on a limited set of parameters and 
user-defined constraints. Methods are available to generate random locations between two 
known locations along a track and the approach proposed by Technitis et al. (2015) is par-
ticularly interesting as it is both efficient and flexible. In Chapter 2, we build on this method 
to develop an algorithm that replaces missing locations using additional information (In-
formed Random Movement Algorithm, or IRMA). In order to generate the most realistic lo-
cations, it is advantageous to extract additional information from the dataset and use it to 
parameterize IRMA to constrain its outputs. This includes extracting information on longitude 
during equinox periods when latitude data are unreliable; determining realistic movement 
rates for each species; extracting and processing raw activity data (wet/dry sensor) when 
available; and estimating periods of attendance to the colony based on activity data. 
 
Having removed spatial and temporal biases in the position dataset, the next step of the 
workflow is to model the habitats of each seabird population (Chapter 3). The presences of 
seabirds were modelled by Species Distribution Models (SDM). SDM has become a widely 
used tool for mapping the habitats of wild animals and plants and are used in various man-
agement applications (Elith & Leathwick 2009). In short, SDMs are empirical models that 
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relate data of species occurrence to data of relevant environmental predictors (Guisan & 
Zimmermann 2000). The relationship is estimated by various statistical methods and is ex-
pected to reflect the environmental niche utilized by the species. In SDMs of presence-only 
data, it is necessary to introduce background points to contrast the recorded presences in 
the analyses (Elith & Leathwick 2009; Barbet-Massin 2012). Several methodological chal-
lenges related to the SDM of the SEATRACK dataset has been dealt with and is presented 
in the present report. The challenges include: Dealing with migratory behaviour and non-
stationary distribution; selection of statistical modelling method; definition of representative 
background points; selection of relevant environmental predictors; and model selection and 
specifications.  
 
Based on the SDMs, it is possible to predict the spatial distribution of likelihoods of occur-
rence in the study area. To translate these values into abundance estimates, it is necessary 
to weight the model predictions with a factor representing population sizes. In other words, 
the predictions from each SDM should be weighted by the size of the population represented 
by the model (Chapter 4). To accomplish this task we: Compiled available data of breeding 
populations to generate a colony dataset for the Northeast Atlantic; analysed how the 

 

 
 
Box 1. Workflow to produce SEATRACK abundance maps. Filtered data of positions of individual 
seabirds are provided by the SEATRACK programme. In Step 1, an algorithm; IRMA (Informed Ran-
dom Movement Algorithm) is used to remove biases and fill gaps in the dataset due to polar 
day/night, equinox and positions over land. The algorithm uses available information and data to 
triangulate new positions. In Step 2, the resulting position data is combined with environmental data 
to model the habitat of each seabird population throughout the year. Environmental variables in-
clude remote sensing data on oceanography and primary production and data on bathymetry. The 
modelling approach involves standard Species Distribution Models with presence-only data. In Step 
3, the predictions from the habitat models are combined with population data to provide predictions 
on the spatial distribution of each population covered by the SEATRACK design.   
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overlap in winter habitat changed with distance between breeding colonies and used the 
results to justify distance-rules for assigning colonies in the colony database to the nearest 
model colony and; used the SDMs to predict habitat maps for each assigned colony and  
weighted the predictions with breeding population size. 
 
The results from the analyses are maps of the estimated monthly distribution of the breeding 
population of each colony covered by the SEATRACK design. The maps can easily be 
summed to cover different parts of the Northeast Atlantic populations (e.g., national or re-
gional populations, or populations within different ocean areas).  Several caveats and limi-
tations regarding the datasets are identified and shortly described in section 4.3.2. One im-
portant limitation is that the sample of tagged birds did only consist of breeding individuals. 
In other words, the maps do not include information on the distribution of non-breeders, 
including immatures. If the distribution of immatures deviates from that of adults, this might 
imply an important limitation concerning the present datasets.  
 
The main purpose of the present report is to document the rationale behind the workflow 
and methods used to map the seasonal distribution of pelagic seabird populations. The 
presentation of some major results can be found in Strøm et al. (2019) and the abundance 
maps will be made available on the SEATRACK web page (www.seapop.no/en/seatrack; 
see section 6.3). Two important tasks remain. First, we will validate and investigate the fit of 
the SDMs using an independent GLS dataset collected in 2017-2018. Second, we will in-
vestigate possible biases in the abundance maps by comparing the estimates with count 
data collected on seabird-at-sea surveys. 
 
 
 
 

http://www.seapop.no/en/seatrack/
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2 Reducing bias in a geolocator-based positional 
dataset 

2.1 Processing of the raw light data 

2.1.1 Estimating coordinates from light-level data 

Our approach starts from geographic data obtained through a pre-processing phase that 
involves downloading and decompressing the raw light-level data from the loggers and con-
verting them into estimated geographic locations. The procedure is described in detail in 
Strøm et al. (2019). 
  
The preliminary processing yielded up to two geolocator-based locations (hereafter GLS 
locations) per bird and per day (one location at noon and one at midnight), with a total of 
1 184 012 unique pre-processed locations and 1 610 individuals in total for the six species 
considered (see Table 2.1 and Fig. 2.1). All processing and analyses described in the fol-
lowing sections were conducted using R Statistical Software v.3.5.1 (R Development Core 
Team 2018). 
 

Table 2.1. Summary of the positional dataset for six pelagic species. GLS locations are the filtered locations 
derived directly from the light-logger data. IRMA locations are the locations that have been determined using the 
informed random movement algorithm described in this report. 

   Number of locations  

Species Individuals Colonies GLS  
(pre-processed) 

GLS  
(filtered) IRMA Tracking 

period 
Little auk 149 5 68 025 34 998 29 780 2010-2018 
Atlantic puffin 272 13 181 892 104 452 122 576 2009-2017 
Northern fulmar 173 7 130 667 74 289 93 104 2011-2017 
Black-legged kittiwake 506 15 414 658 244 988 223 383 2009-2017 
Common guillemot 249 11 206 890 109 085 139 356 2011-2017 
Brünnich guillemot 261 12 181 880 97 001 128 681 2012-2017 
Total 1 610 27 1 184 012 664 813 736 880  

 



NINA Report 1657 
 

12 

 

Figure 2.1. World map showing the unfiltered geolocator-based locations obtained from light-logger data on six 
pelagic species breeding in the North, Norwegian, and Barents seas. Locations with obviously wrong latitudes 
are clearly visible and correspond to the equinox periods. Map coordinate system is EPSG:4327. 

2.1.2 Filtering of the raw positional dataset 

Raw (i.e. unfiltered) GLS locations include a lot of erroneous positions that first need to be 
removed from the dataset. Locations over landmasses were deemed unreliable for all pe-
lagic species and thus systematically eliminated from the dataset. In addition, many loca-
tions could not be determined owing to several causes: 

• Latitude cannot be estimated adequately throughout the equinox periods, when the 
day length is virtually the same everywhere on Earth (during ca. one month in March 
and one month in September each year). However, the longitude derived from light 
loggers is still reliable during those periods and that information was thus kept for 
use at later stages (see section 2.2.2.1); 

• Neither latitude nor longitude can be determined during polar day/night periods, 
when the light loggers do not detect large enough variation in light level; 

• Occasionally, light loggers cannot properly record sunset/sunrise events because of 
the outfitted bird’s behaviour (e.g., when a logger is hidden under the plumage for 
extended periods of time). 

Consequently, the filtered dataset is made of individual tracks characterized by frequent 
gaps (missing locations), ranging from one day to several weeks during the equinoxes or 
even months during polar day/night periods. A total of 664 813 locations (56%) were retained 
in the dataset after filtering. 

2.2 Mitigating biases in the positional dataset using an Informed 
Random Movement Algorithm (IRMA) 

Gaps are not randomly distributed within the positional dataset, creating biases that prevent 
adequate statistical analyses. It is necessary to mitigate those biases by modelling new lo-
cations that will replace all missing ones, i.e. using a movement model that determines 
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possible locations based on a set of parameters and user-defined constraints. The bias-
mitigation process relies primarily on the a(Lisovski et al. 2012)pplication of an algorithm 
generating locations when those are missing (called Informed Random Movement Algo-
rithm, or IRMA), and which uses the algorithm proposed by Technitis et al. (2015). This 
algorithm and its application are described in section 2.2.1. It was necessary to extract ad-
ditional information from the dataset and use it to parameterize IRMA before running it. This 
included extracting information on longitude during equinox periods (section 2.2.2.1), deter-
mining realistic movement rates for each species (section 2.2.2.2), extracting and pro-
cessing raw activity data (wet/dry sensor) when available (section 2.2.2.3), and estimation 
periods of attendance to the colony based on activity data (section 2.2.2.4 and 2.2.2.5). The 
workflow leading to the mitigation of biases can be summarized as follows: 

1. Filtering the pre-processed locations and identifying gaps in the positional dataset 
2. Extracting longitude information during the equinoxes 
3. Determining species-specific movement rates using available GLS-based locations 
4. Extracting wet/dry data 
5. Determining periods of colony attendance 
6. Applying IRMA to replace missing locations based on available additional information 

2.2.1 Underlying algorithm 

Our approach builds on the random-track generator algorithm recently proposed by Tech-
nitis et al. (2015). In short, this algorithm is based on the determination of so-called space-
time prisms, which are 3-dimensional volumes defined by the coordinates (x,y) and time (z). 
The space-time prism delineates all the potential paths that can be followed by an individual 
moving from point A to point B, given three parameters: the distance from A to B, the time 
budget available, and the maximum rate of movement (Miller 1991). When projected onto a 
2-dimensional plane, the space-time prism becomes the potential point area, (hereafter Ppa; 
Technitis et al. 2015). Although the 3-dimensional representation of the space-time prism is 
useful to understand its concept (Neutens et al. 2007), it is naturally more convenient to work 
with only two dimensions when dealing with discrete time steps, as is the case with tracking 
studies where locations are obtained at specific time intervals. Computing the Ppa in this 
context is straightforward (Technitis et al. 2015), given that the three above-mentioned pa-
rameters are known. Let us consider a start point (A) and start time (ti-1), and an end point 
(B) and end time (ti+1). Knowing the maximum rate of movement and the time ti at which a 
new location (Ni) is to be created, one can determine the circle defining the maximum range 
(ri-1) from point A to the new location, and that defining the maximum range (ri+1) from the 
new location to point B. The Ppa corresponds to the area of overlap between those two 
circles of maximum range (Fig. 2.2), i.e. the area delimiting all locations that are reachable 
from both A and B, given the time budget and maximum movement rate. This process can 
be repeated any number of times, depending on the number of new locations that need to 
be generated. The new locations are generated in a random order (i.e. not chronological; 
Fig. 2.3), thus creating a sort of correlated random walk respecting the constraints set by 
the relative position of A and B, the time budget, and the maximum movement rate. Deter-
mining the maximum movement rate was done separately for each species, using the avail-
able location data (described in detail in section 2.2.2.2). 
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Figure 2.2. Illustration of the calculation of the Potential Point Area (Ppa), i.e. the area where any location at 
time i could be, given the parameters (distance from A to B, maximum speed, and time elapsed from A to B). It 
corresponds to the overlap between the circles defined by maximum range from point A to the new location (ri-1) 
and from the new location to point B (ri+1). Adapted from Technitis et al. (2015). 

 

Figure 2.3. Overview of the sequential process for generating new locations within a given data gap. A and B 
represent the start and end points used to determine the new location at time Ti. The first location is neces-
sarily based on the locations defining the start and end of the gap in the filtered dataset. For each subsequent 
iteration A (or B) corresponds to the location that is nearest in time before (or after) Ti. In this example, the new 
locations were created in the following random order: T4, T1, T3, T2. Adapted from Technitis et al. (2015). 

2.2.2 Determining parameters and constraints for IRMA 

2.2.2.1 Extracting longitude information during equinoxes 

Latitudes estimated from geolocator data are characterized by very large errors during the equi-
noxes (Lisovski et al. 2012, Merkel et al. 2016) and are thus virtually unusable. The estimation 
of longitudes, however, is not affected by equinoxes, and therefore such data represent valuable 
information that can be used to constrain modelling of new locations. For each individual bird, 
we extracted the available longitude and timestamp information from all raw locations that cor-
responded to a period of equinox, thus obtaining a time series of longitude. This information is 
stored separately and retrieved when using IRMA to generate a new location for the 
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corresponding timestamp and bird. More specifically, each new location xyi is constrained within 
a given range of longitudes (thereafter longitude buffer; Fig. 2.4) which corresponds to the 
min/max longitudes recorded at time ti ± 1.5 day in the time series, to allow for some flexibility. 
In cases where no solution can be found (i.e the Ppa and the longitude buffer did not overlap), 
the time window from which the max/min longitude values are extracted is increased by 0.5-day 
increments, up to a maximum of 10 days. If no solution can be found, the new location is created 
without any constraint on the longitude. 
 

 

Figure 2.4. Schematic view describing how the longitude buffers are created, starting from the time series of 
longitudes data that were derived from the light-logger data during equinoxes. 

 

2.2.2.2 Determining species-specific movement rates 

As mentioned above, the random movement algorithm on which IRMA is based requires only 
three parameters (Technitis et al. 2015): the distance between the start point A and the endpoint 
B, the time budget (Δti,i+1) and the maximum rate of movement (rmi,i+1) between two successive 
locations at time i and i+1. The time budget is always known, as it is the time elapsed between 
the last and next known locations (i.e. the locations at time i-1 and i+1). The maximum movement 
rate is not known and is likely to vary among species but also as a function of the time elapsed 
between two successive locations, with movement rates decreasing as the elapsed time in-
creases. Instead of using a constant parameter value for rmi,i+1 we derived models predicting the 
movement rate as a function of the time elapsed between two successive locations. We first 
calculated the time elapsed and net displacement among random combinations of pairs of 
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locations. To avoid bias we stratified the dataset by individual and used the same number of 
locations per individual, i.e. we randomly selected the same number of locations from each indi-
vidual in the dataset. Individuals with fewer than 180 relocations were not used at this stage in 
order to have sufficient sample size. All data were then merged into a single dataset before 
modelling the movement rate as a smoothed function of the time elapsed between two succes-
sive locations. We modelled the rate of movement such that rmi,i+1 = bs(Δti,i+1), where bs() is a 
B-spline polynomial smoother. Because we were interested in movement rates situated in the 
upper range of possible values, and not average movement rates, we used quantile regression 
with the 75th percentile as response variable (Fig. 2.5). In addition, the 75th percentile constitutes 
a rather conservative value for the average movement rate, thus providing IRMA with some flex-
ibility to increase this movement rate in cases where no geographic solutions are found (i.e. 
when the ranges do not overlap; Appendix 6.1). We used function rq from package {quantreg} 
(Koenker 2018) and function bs from package {splines} (R Development Core Team 2018) to 
run the quantile regression with a smoothing polynomial function. Each model was stored and 
retrieved later on to provide IRMA with rmi,i+1 corresponding to the species considered. This 
approach is based on the GLS-derived locations and thus integrates the large error associated 
to this type of positioning. Therefore, the obtained predicted movement rates might differ from 
the actual movement rates of a given species, although they will reflect the movement rates 
obtained through GLS positioning and thus yield values that are consistent with the rest of our 
dataset. 
 

 

Figure 2.5. Movement rate (orange curve, representing the 75th percentile predicted from a quantile regression 
model) as a function of time elapsed between two locations, for black-legged kittiwakes. The same modelling 
approach was used for each species. 

2.2.2.3 Extracting wet/dry data 

Most of the geolocator models used were equipped with binary conductivity sensors which could 
be used to record the state (wet, 1 or high conductivity, or dry, 0 or no conductivity) of the logger. 
Depending on the logger model and programming mode, the wet/dry state was measured at 
varying intervals (from 3 to 30 sec) and summed over different periods (5 to 240 min), leading to 
measurements on different scales. All wet/dry data were first standardized such that xst=x/xmax, 
where xst is the standardized value and xmax is the maximum value that can be measured, i.e. 
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when the wet/dry sensor indicates “wet” (1) over the entire summing period. Consequently, the 
standardize wet/dry data can be compared among individuals independently from the logger 
model. Due to the loggers’ limited storage space, the wet/dry data were sometimes no longer 
recorded even when light-level data were recorded (i.e. positions were still obtained). In addition, 
some loggers failed to record any wet/dry data. Therefore, wet/dry data were not available for all 
individuals and tracking periods. All the available wet/dry data were extracted and stored sepa-
rately for each individual. 

2.2.2.4 Determining breeding dates at colony level 

Wet/dry data were used first to determine the start and end dates of the breeding period, thus 
assuming that periods characterized by longer period of dry data represent the periods when 
birds are sitting on their nest. Because the wet/dry data are recorded at relatively short intervals, 
it was necessary to smooth them before further analysis. First, we calculated the daily average 
for each individual time series of wet/dry data. Then, we calculated a 5-day running mean and 
running minimum, using functions runmean and runmin from package {caTools} (Tuszynski 
2018). Finally, we applied the Lavielle partitioning algorithm (Barraquand & Benhamou 2008) to 
identify transitions within each time series (i.e., transitions in running mean and running mini-
mum). We used the function ts.LaviellePart from package {adehabitatLT} (Calenge 2006), which 
partitions time series into k sections with similar mean for the response variable. In other words, 
partitioning was used to distinguish between periods of mostly wet data and periods of mostly 
dry data. Periods with mostly dry data were assumed to reflect colony attendance. We could 
then identify the dates of transition between periods with different wet/dry states. For the sake of 
simplicity, only transition dates between 1 March and 30 September were considered, thereby 
assuming that the dates identified outside this period did not indicate colony attendance in rela-
tion to nesting activity. This can be adjusted for each species. The output from this algorithm is 
a list, for each colony, species, and individuals, of all breeding dates (start and end) that could 
be identified. It is important to note here that it was not possible to confirm the breeding status 
of individual birds in situ in most cases. This means that our results rely on the assumption that 
all birds returned to the colony and attempted to breed during the breeding season.  
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Figure 2.6. Examples of the estimated periods of colony attendance for two individuals of black-legged kitti-
wakes. The grey dots show the activity level data from the GLS-loggers, after standardizing. The curves repre-
sent the 5-day running mean (red) and minimum (blue) of the standardized activity data. The vertical bars indicate 
the estimated dates of start (dashed lines) and end (continuous lines) of the breeding period, based on the 
Lavielle partitioning analysis. The upper panel shows an example where the running mean and running minimum 
yielded the same estimates, while the lower panel showed the discrepancy that can occur when estimates are 
based on the running mean vs running minimum. In the present approach, all dates were considered for a given 
colony and year, and the median date among all individuals was used to define the start or end of the breeding 
period. 

2.2.2.5 Determining colony attendance at individual level 

During the breeding season, the mobility of birds that are actively breeding is limited, as they 
behave as central place foragers. Applying IRMA without any kind of constraint would lead to the 
generation of movements that extend unrealistically far from the breeding colony. Once the 
breeding period was determined for each colony and year (previous step), a breeding state (po-
tentially breeding/not breeding) could subsequently be attributed to each individual bird, based 
on the date and its breeding colony. Before running IRMA to create a new location for a given 
individual at a given time ti, individual wet/dry data time series were inspected whenever that 
individual was in a “potentially breeding” state. At this stage, the formatted wet/dry data (see 
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section 2.2.2.3) are used to determine whether that individual was more likely sitting on its nest 
(mostly dry) or at sea (mostly wet) at a given time. This was done by summarizing the wet/dry 
data within a 12-hour period around that time (ti ± 6h). The size of the buffer was chosen to be 
small enough to be representative of the behaviour around ti. We used the median as a summary 
statistic of the wet/dry values over the time period defined by the buffer. A median wet/dry value 
of <0.4 was considered to represent a “mostly dry” period. This threshold value can be adjusted, 
but in our case, it means that we work under the assumption that a median wet/dry value of 0.4 
or higher indicated that a given bird spent enough time at sea to be considered as not being 
sitting on its nesting during the 12-h period considered. Every time a period is categorised as 
mostly dry, the bird’s location is restricted to a buffer area of 50-km radius around the colony at 
ti. This buffer area was thus used as the Ppa, within which the new location was then randomly 
drawn (Fig. 2.7). The value of 50-km represents a compromise between large distance that can 
be covered by some species, while other species stay only in the vicinity of their colony during 
the entire breeding season. It could in the future be possible to include species-specific buffer 
areas in order to achieve higher precision. It is however important to keep in mind that we are 
dealing with GLS locations with an inherently low precision. 
 

 

Figure 2.7. Example for a black-legged kittiwake from the Faroe Islands illustrating the approach used to gener-
ate new locations during the breeding period. The start and end points of the gap are represented by a green 
triangle and a red square, respectively. These are GLS-based locations, and the dashed lines show a few steps 
before and after the gap. The orange points indicate locations that were not constrained within the 50-km buffer 
around the colony (shaded area) because the corresponding activity data indicated mostly wet (median activity 
level > 0.4, as shown by the horizontal lines on the two graphs on the left). In contrast, dark grey points indicate 
locations that were constrained to be close to the colony (median activity level <= 0.4, as shown by the horizontal 
line on the two graphs on the right). Whether each new location should be constrained or not is based on the 
standardized activity data (wet/dry) at the corresponding timestamp (± 6 hours). 
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Conversely, a median wet/dry value of ≥0.4 was considered to represent birds spending a 
substantial amount of time away from its nest and therefore assumed to be at sea: in this latter 
situation that individual was allowed to wander farther from its colony by applying IRMA to gen-
erate the new location. In other words, in such instances the position of the new location was not 
constrained in the vicinity of the colony (Fig. 2.7). 

2.2.2.6 Excluding areas above landmasses 

We used a high-resolution vectorized land mask (NOAA 2018, Wessel & Smith 1996) to exclude 
all GLS locations that occurred above land and constrain the creation of new locations above 
ocean areas. In addition, we adjusted the land mask to also exclude small or almost closed seas 
such as the Mediterranean Sea (closed at the Strait of Gilbraltar) and the Baltic Sea (closed at 
the level of Gdansk, Poland), where our study species and populations should only rarely be 
observed. It is safe to assume that the very rare occurrence of a few individuals in those areas 
during limited periods did not influence our results. It was necessary to restrain the access to 
these areas to IRMA, to prevent large numbers of individuals from being “trapped” indefinitely in 
these closed areas once new locations were created there. 

2.2.2.7 Excluding areas with high sea-ice cover 

Daily sea ice concentration data were retrieved from the NOAA OI SST V2 High-resolution da-
taset, at a resolution of 0.25°x0.25°, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 
USA, from their Web site at http://www.esrl.noaa.gov/psd/. Here, we used the contour lines de-
limiting areas with > 50% concentration of sea ice to create daily polygons that were used as 
exclusion areas, similarly to the land mask. We therefore assumed that areas with high concen-
trations of sea-ice represented unsuitable habitat for the six study species. 

2.2.2.8 Excluding areas during polar day/night periods 

Locations cannot be derived from light loggers during polar night/day periods, due to the lack of 
sunset and sunrise events. However, light levels are still being recorded during those periods, 
and can thus indicate whether a given bird remained continuously north of the Arctic circle, i.e. 
in the polar night area during winter (continuous low light level) or in the polar day area during 
summer (continuous high light level). This information can thus help us constrain the creation 
of new locations to areas within or without the polar night/day area. 

2.2.3 Applying IRMA: exceptions and limitations 

Once a Ppa has been determined, it will be geographically constrained (i.e. clipped) using addi-
tional information extracted either from the light-loggers, e.g. wet/dry data, or from environmental 
datasets, e.g. sea ice concentration. IRMA integrates all the available extra information to further 
limit the geographic extent of the Ppa to the smallest possible area (Fig. 2.8 and Appendix 6.1). 
The following set of rules was used to determine when and how IRMA should be applied: 
1. Ideally, all gaps should be filled in, i.e. all missing locations should be replaced in order to 

reduce the bias in the dataset as much as possible. In practice, however, IRMA was not ap-
plied when gaps in the positional dataset were longer than three months. Although it is tech-
nically possible to generate movements over any period of time, longer gaps are more likely 
to cover phenological periods with very different movement behaviours and can thus not 
provide enough information to IRMA to produce relevant tracks. The tracks for some spe-
cies (e.g. Atlantic puffins) were characterized by large data gaps spanning both the breed-
ing season and equinox periods, i.e. > 3 months. Tracks in such instances could thus not be 
reconstructed throughout the entire annual cycle. 

http://www.esrl.noaa.gov/psd/
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2. Because our approach is based on conservative values for the starting set of parameters 
(e.g. maximum speed, longitude buffer), IRMA cannot always find any geometric solution 
given that original set of parameters. The entire approach relies on the possibility to calcu-
late a Ppa between two locations A and B (Fig. 2.2). When the maximum ranges ri-1 and ri+1

 

(Fig. 2.2) do not overlap, there is naturally no solution for determining a Ppa. This can occur 
whenever the movement rates used are too low. In other instances, e.g. during an equinox 
period when longitude data are available, a Ppa can be created that does not overlap the 
longitude buffer (this can occur owing to GLS-based errors on the longitude data and/or on 
the known locations A and B). It is therefore necessary to provide some flexibility to IRMA 
so that it can calculate a Ppa in such instances, given the information at hand. This flexibility 
is provided by allowing the algorithm to incrementally increase the value of key parameters 
until it can determine a Ppa from which a new location can be randomly drawn. This is done 
first by increasing the movement rates until a solution is found or until the speed threshold is 
met, then by increasing the longitude buffer until a solution is found, or until a maximum pe-
riod of ten days is used. If that threshold of ten days is reached and still no solution is found, 
the longitude buffer is ignored. The maximum movement rate has a threshold of 20 m/s, and 
no location is created if it leads to movement rates beyond that threshold. It is important to 
remember that because we deal with GLS-based locations having an inherent positional er-
ror of several hundreds of km, some locations will generate unrealistic movement rates. 
However, IRMA will always use the most conservative values for the parameters, starting 
from the movement rate value estimated from the GLS data, and increasing it to higher val-
ues only in cases where no geometric solution is possible (see Appendix 6.1).  
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Figure 2.8. Schematic workflow detailing the successive steps undertaken by IRMA when generating a new 
location. First the Potential Point Area (Ppa) following Technitis et al. (2015) and then various constraints are 
applied before a new location is randomly drawn within the resulting area. All constraints are based on additional 
available information used to generate masks (i.e. polygons). Each mask is applied directly onto the Ppa, thus 
excluding sections where it is assumed a given location could not occur at a given time. See Appendix 6.1 for 
more details on the logical steps within IRMA. 
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3 Habitat modelling 

3.1 Introduction to Species Distribution Models (SDM) 
Species Distribution Models (SDMs) have become a widely used tool for mapping the habitats 
of wild animals and plants and are used in various management applications such as conserva-
tion planning of endangered species, impact assessments of human activities and spatial plan-
ning of protected areas (Guisan & Thuiller 2005; Elith & Leathwick 2009). In short, SDMs are 
empirical models that relate data of species occurrence to data of relevant environmental pre-
dictors (Guisan & Zimmermann 2000). The relationship is estimated by various statistical meth-
ods and is expected to reflect the environmental niche utilized by the species. If the realized 
niche is constant across space, the relationship can be used to predict the spatial distribution of 
the species in areas where the environmental variables are known. Given the environmental 
conditions, the resulting map represents a quantitative estimate of the distribution of the species 
and is frequently used to inform decision makers in management processes (Guisan & Thuiller 
2005; Elith & Leathwick 2009).  
 
The interpretation and applicability of the spatial predictions derived from SDMs depend on sev-
eral assumptions as well as on the nature of the input data (Guisan & Thuiller 2005; Elith & 
Leathwick 2009; Guillera-Arroita et al. 2015). To capture the actual habitat, it is vital that the 
environmental predictors cover the most important factors that influence the distribution of the 
species. Failure to identify important predictors will result in poor model fit and low predictive 
power. The environmental predictors can exert direct or indirect impacts on the distribution of the 
species. Most often, predictors used in SDMs encompass open-access data of physical or biotic 
parameters available for extensive areas by for example remote sensing (e.g., temperature, sa-
linity, bathymetry, currents, primary production). In many cases, it is assumed that these predic-
tors exert indirect effects on the species through for example affecting the availability of food 
resources (for seabirds and GLS see e.g. Torres et al. 2016; Krüger et al. 2017; 2018; Legrand 
et al. 2016). Biotic interactions such as competition, predation and facilitation are likely to have 
strong direct impact on species distribution (e.g. Lima 2002), however such data are often difficult 
to collect, and in cases where they are missing and not indirectly accounted for by other varia-
bles, the result could be poor model fit and misleading habitat predictions. 
 
Predictions from SDMs can either involve extrapolations, in which the predictions are done for 
areas or time periods not covered by data, or they can be interpolations, in which the predictions 
are done within the area and time period covered by the data. Habitat predictions from extrapo-
lations can only provide reliable estimates when the environmental niche estimated by the model 
is transferrable from the modelled habitat to the new setting. Because new areas or time periods 
represent a novel situation that could alter the relationship between the environment and the 
distribution of the species, the assumption of transferability is not always met (e.g., Torres et al. 
2018). However, given that the SDM provides a realistic estimate of the environmental niche 
utilized by the species, extrapolations can give valuable information of habitat suitability in new 
areas or time periods. Such analyses have become a highly important tool in the assessments 
of how climate change might impact the habitats of vulnerable species (e.g., Elith et al. 2010; 
Krüger et al. 2018).  
 
Related to the issue of interpolation and extrapolation, is the equilibrium assumption in SDMs 
(Guisan & Thuiller 2005; Elith et al. 2010). To be valid, the predictions from SDMs presuppose 
that the spatial distribution of the species has reached an equilibrium with the environment. A 
species has not reached an equilibrium in cases in which the abundance is still increasing in 
favourable areas and decreasing in unfavourable areas. The equilibrium assumption is accord-
ingly not met for migrating or range-shifting species where the species continuously invade and 
encounter new habitats. Because the individuals have not settled in the habitat, the SDM do not 
reflect the species’ “true” environmental niche. The predictions from the SDM will consequently 
be biased by space and will at best only be valid for a limited time period. This setting does 
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certainly apply to migrating seabirds that migrate between the breeding colony and seasonal 
foraging areas at sea. The birds’ selection of environmental niches is constrained (or biased) by 
a geographical area (the colony), and it might therefore be important to control for distance to 
the colony and season in the SDMs. 
 
Species data in SDMs can either be “presence-only data”, “presence-absence data” or “abun-
dance data”. In the case of “presence-only data”, the data are observations of the occurrence of 
a species. Tracking data such as GLS data are examples of presence-only data because the 
data consists of geographical positions of presences only. Survey data where the species is 
observed or counted in specified areas or along transects, represent another type of data since 
the data consists of presence-absence or abundance recordings. In SDMs of survey data, the 
abundance or presence/absence at a given location is related to the environmental predictors. 
Data from seabirds at sea surveys were for example used in SDMs to map the distribution of 
different seabird species in Norwegian waters (Fauchald et al. 2011; Fauchald 2011). The pre-
dictions from such SDMs can, if the observations are unbiased, represent the true distribution of 
the abundance of the species.  
 
In contrast to SDMs of survey data, it is necessary to introduce background points to contrast 
the recorded presences in SDMs of presence-only data (Phillips et al. 2009). Such models are 
therefore often referred to as presence-background models (Guillera-Arroita et al. 2015). The 
intention of the background data is to provide a representative sample of the set of environmental 
conditions available to the species, and then compare this set of available environmental niches 
to the measured presences (Phillips et al. 2009). Commonly, the background points are a ran-
dom sample of locations within the distributional range of the species. Because the background 
points do not contain any information of occurrence or abundance, predictions from presence-
background models cannot represent the true abundance or probability of occurrence of a spe-
cies. It is therefore important to note that the predictions from such models represent relative 
values and should be interpreted as the relative likelihood of species occurrence (Guillera-Arroita 
et al. 2015). However, the relative likelihood is proportional to the probability of occurrence (Guil-
lera-Arroita et al. 2015), and for seabird tracking data, where the occurrence of individuals from 
a specific breeding population is recorded, it is possible to translate the predictions from the SDM 
into estimates of abundance by weighting the relative likelihood values from the SDM with the 
size of the population which the tracked individuals represent (see Chapter 3). 
 
When collecting spatial data for SDMs, sampling bias occur when the probability of sampling a 
location is not the same across the habitat. For abundance and presence-absence data, sam-
pling bias will result in less precise estimates of occurrences in areas that have less probability 
of being sampled (i.e., areas that are under-sampled). Although the precision of the estimate is 
negatively affected, sampling bias will in this case not result in a biased estimate. However, for 
presence-only data, sampling bias has a more critical consequence (e.g. Guillera-Arroita et al. 
2015). This is because the probability of sampling a location has a direct positive impact on the 
probability of recording a presence, and hence on the estimates from the presence-background 
model. Accordingly, sampling bias result in bias in the estimates from the SDM and consequently 
wrong (or biased) predictions. For GLS data on seabirds, spatial sampling bias arise when Arctic 
areas are not sampled during polar night and midnight sun conditions, and when positions over 
land and fast sea ice are removed. Temporal sampling bias arise during equinox periods when 
positions are unreliable and removed from the sample. It is essential to remove such biases, and 
the purpose of IRMA, described in the previous chapters, is to remove as much of this sampling 
bias as possible. 
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3.2 SDMs of Northeast Atlantic seabirds 

3.2.1 General modelling approach 

We applied SDMs on the SEATRACK datasets of six pelagic seabird species breeding in the 
Northeast Atlantic: Northern fulmar, black-legged kittiwake, common guillemot, Brünnich’s guil-
lemot, little auk and Atlantic puffin. 
 
GLS loggers were attached and retrieved from breeding birds in 25 different colonies in the 
Northeast Atlantic (see Figure 1.1) from 2012 to 2017 (note that two colonies from the original 
dataset (Table 2.1) were excluded owing to a too small number of birds tracked (< 4 individuals)). 
In total 1523 annual tracks were recorded (Table 3.1). Note also that not all tracks completed the 
entire annual cycle and that the same individuals in several cases were recorded in more than 
one year. Detailed sample sizes (number of individuals, number of GLS positions and number 
of IRMA positions for each SDM is given in Appendix 6.2. Pelagic seabirds have a seasonal 
migratory behaviour, migrating between the area around their breeding colony where they stay 
during spring and summer, and various feeding grounds at sea where they stay during the non-
breeding period (see e.g., Frederiksen et al. 2012; Fort et al. 2013; Tranquilla et al. 2013; Fayet 
et al. 2017; Linnebjerg et al. 2018). Migratory behaviour makes SDMs challenging because when 
birds enter new habitats, they are less likely to be in spatial equilibrium with the environment 
(see section 3.1). To account for seasonal changes, we conducted separate SDMs for each 
month. Moreover, to account for possible differences in migratory pattern among birds from dif-
ferent breeding colonies, we conducted separate SDMs for each colony. Finally, because we 
wanted the models to reflect the seasonal distribution irrespective of year, we pooled data from 
all years in the analyses. In other words, SDMs were run for all combinations of month/colony 
with data from all years pooled. 
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 Table 2.1 - Number of annual tracks for each colony and species. Col-
onies with fewer than 4 birds are not included. 
Species Colony Number of tracks 
Northern fulmar Alkefjellet 5 

 Bjørnøya 26 
 Eynhallow 44 
 Faroe Islands 11 
 Jan Mayen 33 
 Jarsteinen 8 
 Langanes and Skjalfandi 46 

Black-legged kittiwake Alkefjellet 20 
 Anda 54 
 Bjørnøya 40 
 Cape Krutik 33 
 Cape Sakhanin 5 
 Faroe Islands 21 
 Franz Josef Land 54 
 Hornøya 49 
 Isfjorden 29 
 Isle of May 35 
 Kongsfjorden 34 
 Langanes and Skjalfandi 27 
 Røst 43 
 Runde and Ålesund 25 
 Sklinna 36 

Common guillemot Bjørnøya 35 
 Cape Gorodetskiy 4 
 Faroe Islands 7 
 Grimsey 9 
 Hjelmsøya 28 
 Hornøya 37 
 Isle of May 32 
 Jan Mayen 27 
 Langanes and Skjalfandi 27 
 Sklinna 38 

Brünnich's guillemot Alkefjellet 23 
 Bjørnøya 29 
 Cape Gorodetskiy 16 
 Cape Sakhanin 41 

 
Franz Josef Land/Oran-
skie Islands 11 

 Grimsey 12 
 Hornøya 46 
 Isfjorden 17 
 Jan Mayen 42 
 Langanes and Skjalfandi 17 

Little auk Bjørnøya 29 
 Franz Josef Land 36 
 Hornsund 53 
 Isfjorden 15 
 Kongsfjorden 16 

Atlantic puffin Anda 15 
 Faroe Islands 6 
 Grimsey 28 
 Hjelmsøya 20 
 Hornøya 51 
 Isle of May 39 
 Papey 19 
 Røst 57 
 Runde and Ålesund 13 
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3.2.2 Modelling method 

Several modelling techniques are available for fitting SDMs of presence-only data (see e.g., 
Guisan & Thuiller 2005; Elith & Leathwick 2009). These include regression techniques such as 
Generalized Linear Models (GLM) and Generalized Additive Models (GAM) and machine learn-
ing techniques such as Boosted Regression Tree (BRT) and Maximum Entropy (MaxEnt). En-
semble models that combine the output from several modelling techniques has also been advo-
cated (Scale et al. 2016).  
 
In the present study we decided to use the GAM technique (Hastie & Tibshirani 1990; Wood 
2006). GAM is a well-proven and computational efficient regression method that relates a linear 
response variable to smooth functions of predictor variables. The smooth functions can model 
non-linear relationships, and GAM is accordingly more flexible than GLM which is based on linear 
relationships. Compared to the machine learning techniques, GAM offers a more straightforward 
interpretation of the fitted model. Machine learning techniques will in some cases involve com-
plex relationships and interactions. This could yield higher precisions in the predictions but might 
on the other hand not yield any intelligible functional relationships. In studies comparing the var-
ious methods, GAM has a similar performance as machine learning techniques (see Wisz et al. 
2008; Elith et al. 2010; Scales et al. 2016). GAM performs somewhat poorer with small sample 
sizes (< 20 presences) but is among the best methods for larger samples (>50 presences) (Wisz 
et al. 2008). The present models were based on from 47 to 6260 presences (median: 1884) (see 
Appendix 6.2.) 
 
We used logistic regression GAM to fit the binomial presence/background data to the environ-
mental predictors. Models where fitted using the {mgcv} package in R. We used thin plate re-
gression spline as smoothing basis and generalized cross-validation was used to optimize the 
degree of smoothing. The predict function was used to predict the output from the model on a 
grid with known environmental variables.  

3.2.3 Presence and background data 

GLS data are presence-only data, and sampling bias related to factors discussed in chapter 1 
will accordingly generate bias in the predictions from the SDMs (see section 3.1). To minimize 
sampling bias, we applied IRMA (see section 2) to the GLS dataset and used the combined 
dataset in the SDMs. The aim of IRMA is to provide informed random presences in areas and 
periods where the sampling process fail to allow recordings and thus introduces biases in the 
dataset. Accordingly, the proportion of IRMA points in the sample was high during the equinox 
periods and for species residing in northern areas during polar night and midnight sun. Number 
of IRMA and GLS presences in each SDM is given in Appendix 6.2.   
 
In SDMs of presence-only data, it is necessary to introduce background points to contrast the 
recorded presences in the analyses (Elith & Leathwick 2009; Barbet-Massin 2012). It is essential 
that the background data is a representative set of environmental conditions available to the 
species (Phillips et al. 2009). In the present analyses, background data points were selected 
randomly from an area defined by the minimum convex polygon of all recorded positions of 
the species (including IRMA points) using function mcp from package {adehabitatHR}. To 
the polygon, we added a buffer with a width equal to 10% of the radius of a circle defined by 
the area of the minimum convex polygon (see Figure 3.1). We assumed that the seabirds did not 
occur over land and fast sea ice, and we accordingly removed areas covered by land and areas 
with a sea-ice concentration > 50% using monthly sea-ice data from NSIDC (see section 3.2.4).  
 
The SDMs were conducted separately for different months but data could include observations 
from more than one year (see section 3.2.1). Because some of the environmental variables var-
ies between years (i.e., ice-cover, sea surface temperature, sea surface height, primary produc-
tion; see section 3.2.4), we included background data from each year represented by the 
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presence data. The performance of regression techniques such as GAM increases with the num-
ber of background points used in the analyses, and Barbet-Massin et al. (2012) recommended 
the use of a large number (e.g., 10000 points) without weighing for presences and backgrounds. 
Accordingly, we drew 10000 background points randomly from each habitat/year represented in 
the presence data. Number of background points in each SDM is given in the Appendix 6.2. Note 
that some background points might be removed due to missing environmental variables, thus 
the background sample size might be slightly less than a multiply of 10000. 

3.2.4 Model data: Environmental predictors 

Ideally the environmental predictors should cover the most important environmental features im-
pacting the spatial distribution of the species (see section 3.1). We used available datasets that 
cover the study region and that could impact the habitat suitability for seabirds. The predictors 
encompass several oceanographic features that are important for shaping the productivity and 
other characteristics of the marine pelagic ecosystem (Table 3.2). During the annual cycle, the 
birds migrate between the breeding colony and the marine pelagic habitat. The breeding colony 
is therefore a spatial constraint that is important for shaping the spatial distribution of the birds, 
and we consequently included distance to the colony (ColD) as a predictor in the analyses. Fi-
nally, during the initial analyses, we realized that we in some cases predicted high probability of 
occurrence north in the Barents Sea without having any observed presences in the area. We 
concluded that the environmental conditions in this area could be similar to the preferred habitat 
further south, but that the birds were limited by other factors not accounted for in the analyses. 
Seabirds are visual predators, and daylength could be one factor that restricts the birds’ foraging 
activity during winter in the far north. We therefore included daylength (Daylen) as a predictor in 
the analyses, but only in the period from October to February. Environmental data (from January 
2016) are plotted in Figures 3.2-3.4. 
 
All predictors were spatially adjusted to fit a geographic spatial raster of the study area from -
78°E to 80°E (longitude) and from 35°N to 85°N (latitude) with a spatial resolution of 0.1 x 0.1 
degrees. Data with a lower spatial resolution or configuration were either disaggregated using 
the function disaggregate from the package {raster} with a bilinear local interpolation or 
resampled using the function resample with a bilinear local interpolation. We investigated co-
linearity in the predictor dataset by calculating the correlation matrix between predictors from 
background data for different months and species (Table 3.3). Some co-linearity was present; 
SST was more or less correlated with all other variables except Front. Maximum correlation was 
found between CoastD and Depth (r =0.81; R2 = 0.66). However, to maximize the predictive 

 
Figure 3.1. All presence recordings of Atlantic puffin (red), and the defined habitat from where background points 
where drawn (blue). The habitat was defined by the minimum convex polygon of all presence point plus a 10% buffer 
(see text). In addition, land masses and sea ice concentration >50% (depending on year and month) where removed. 
Note that ice-covered areas were not removed in this figure. 
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value of the models, we decided to keep all variables in the model when feasible (see modelling 
approach in section 3.2.5). 
 
 

 

Table 3.2 - Environmental variables used in the Species Distribution Models (SDM). 

SST -Sea Surface Temperature (°C) 
Front -Gradient in SST. Local standard deviation in SST in the 0.3°N X 0.7°E area around 

0.1°N X 0.1°E focal cells.  
Dataset: 

Product Id: NOAA_OI_SST_V2 
Organization: NOAA/OAR/ESRL PSD, Boulder, Colorado, USA 
Url: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html 
Reference: Reynolds et al. (2002) 
Resolution: 1°N X 1°E, monthly 

Dice -Shortest distance to ice edge (km). Ice edge defined as sea ice concentration between 
30% and 70%. Transformation: Log10(x+1).  

Icemask -A mask for masking ice covered areas (ice concentration > 50%) from the habitat. 
Dataset: 

Product Id: NOAA_OI_SST_V2 
Org: NOAA/OAR/ESRL PSD, Boulder, Colorado, USA 
Url: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html 
Resolution: 1°N X 1°E, monthly 

Adt -Absolute dynamic topography (m). Sea surface height above geoid. Monthly average. 
Dataset: 

Product Id: SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 
Org: Copernicus Marine Environment Monitoring Service 
url: http://marine.copernicus.eu/services-portfolio/access-to-
products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_
OBSERVATIONS_008_047 
Resolution: 0.25°N X 0.25°E, daily 

Prim -Annual net primary production (mg C/m2 / day). Annual sum. Transformation: 
Log10(x/1000+1). 

Dataset: 
Product Id: Standard VGPM 
Org: Oregon State University, Ocean Productivity 
url: http://www.science.oregonstate.edu/ocean.productivity/index.php 
Reference: Behrenfeld & Falkowski (1997) 
Resolution: 1/6°N X 1/6°E, monthly 

Depth -Bottom depth (m). Transformation: Log10(x+1). 
Edge -Gradient in bottom depth. Smoothed local standard deviation in Depth in the 1.1°N X 

2.1°E area around 0.1°N X 0.1°E focal cells. 
Dataset: 
Product Id: ETOPO2v2 2006 
Org: DOC/NOAA/NESDIS/NGDC 
url: https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html 
Reference: National Geophysical Data Center (2006) 
Resolution: 2/60°N X 2/60°E 

CoastD -Shortest distance to coast (km). Transformation: Log10(x+1). 
ColD -Shortest distance to breeding colony (km). Transformation: Log10(x+1). 
Daylen -Mid-month daylength from nautical dawn to nautical dusk (hours). Nautical dawn and 

dusk defined by sun 6 degrees below horizon. Calculation: {suncalc} R 

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
http://www.science.oregonstate.edu/ocean.productivity/index.php
https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html
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Figure 3.2. Environmental predictors, January 2016. From top: Sea surface temperature (SST), Gradient in SST (front), 
Distance to sea ice (Dice). Definitions and datasets are given in Table 3.2. 
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Figure 3.3. Environmental predictors, January 2016. From top: Absolute dynamic topography (sea level above geoid) 
(Adt), Annual net primary production (Prim), Bottom depth (Depth), gradient in bottom depth (Edge), Definitions and 
datasets are given in Table 3.2. 
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Table 3.3. Pearson’s correlation matrices of environmental predictors. A) Correlations calculated on background 
points from Brünnich’s guillemot’s habitat in January (n=30000). B) Correlations calculated on background points 
from black-legged kittiwake’s habitat in July (n=40000). 

A) SST Front Dice Adt Prim Daylen Depth Edge CoastD 
SST 1 0.1 0.73 0.61 0.46 0.59 0.35 -0.25 0.43 

Front 0.1 1 0.03 0.01 0.09 0.21 0.17 0.01 0.22 
Dice 0.73 0.03 1 0.36 0.58 0.63 0.2 -0.13 0.31 
Adt 0.61 0.01 0.36 1 0.32 0.24 -0.28 0.15 -0.09 

Prim 0.46 0.09 0.58 0.32 1 0.49 0.05 -0.09 0.16 
Daylen 0.59 0.21 0.63 0.24 0.49 1 0.27 -0.04 0.34 
Depth 0.35 0.17 0.2 -0.28 0.05 0.27 1 -0.62 0.8 
Edge -0.25 0.01 -0.13 0.15 -0.09 -0.04 -0.62 1 -0.73 

CoastD 0.43 0.22 0.31 -0.09 0.16 0.34 0.8 -0.73 1 
 

B) SST Front Dice Adt Prim Depth Edge CoastD 
SST 1 -0.05 0.79 0.76 0.42 0.42 -0.2 0.4 

Front -0.05 1 -0.06 -0.18 0.07 -0.07 0.15 -0.02 
Dice 0.79 -0.06 1 0.45 0.56 0.35 -0.16 0.38 
Adt 0.76 -0.18 0.45 1 0.16 0.16 -0.08 0.18 

Prim 0.42 0.07 0.56 0.16 1 0.02 -0.03 0.12 
Depth 0.42 -0.07 0.35 0.16 0.02 1 -0.64 0.81 
Edge -0.2 0.15 -0.16 -0.08 -0.03 -0.64 1 -0.74 

CoastD 0.4 -0.02 0.38 0.18 0.12 0.81 -0.74 1 

 

 
Figure 3.4. Environmental predictors. From top: Distance to coast (CoastD), Daylength (January) (Daylen). Definitions 
and datasets are given in Table 3.2. 
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3.2.5 Model specifications and diagnostics 

SDMs of presence-background data for each species, colony and month were fitted using the 
function bam from package {mgcv} in R. The probability of presence/background was modelled 
using a logit link with a binomial distribution.  
 
Initially a full model including all predictors was fitted (Model 1; Table 3.4). In some cases, the 
model predicted clearly false presences in the far east and/or the far west of the study area (see 
example of diagnostic plots in Figure 3.5). This was likely due to the presence of favourable 
environmental conditions in areas the birds were unable to reach. In these instances, we included 
longitude as a variable in the full model (Model 2). In cases where the models failed to converge, 
we tried a simplified model with fewer predictors. In addition, we introduced a limit to the degree 
of smoothing by limiting the maximum number of knots to four (k=4) for each predictor (Model 
3). Finally, sample sizes were often small during the breeding period, and in cases were Model 
1 and 3 failed, we used a simple model including only distance to the colony (ColD) with k=3 as 
a predictor (Model 4).  
 
In total, we conducted 636 successful SDMs for the six focal species (Table 3.5). Models are 
summarized in the Appendix 6.2. For some colonies and periods, sample size was too small for 
modelling. This was particularly true during the summer months for the high-arctic colonies of 
little auk, Brünnich’s guillemots, northern fulmar and black-legged kittiwakes. For months and 
colonies with a small sample size, we adopted the following strategies:  

1) Include data 15 days before and 15 days after the month modelled: Applied in 29 cases. 
2) Include data from the nearest colony: Data on Brünnich’s guillemots from Oranskie Island 

and Franz Josef Land were pooled. 
3) Use the model from the nearest colony or month: This was applied in 25 cases (No model 

in Table 3.5) when modelling was not feasible (during summer only).  
For little auks, we were unable to model the period from May to August. Thus, for this species, 
we have not developed distribution maps for the summer months.  
 
 
Table 3.4. Model formulations and variables used in the SDMs. 

Model 1: pb~s(sst)+s(front)+s(dice)+s(adt)+s(prim)+s(daylen)+s(depth)+s(edge)+s(coastd)+s(cold), 
family=binomial(link="logit") 

Model 2: Model 1 + the term s(east) 
Model 3: pb~s(sst,k=4)+s(cold,k=4)+s(coastd,k=4)+s(east,k=4), family=binomial(link="logit") 
Model 4: pb~s(cold,k=3), family=binomial(link="logit") 

 
 

Variables Explanation 
pb Presence, Background (1,0); response variable 
sst Sea surface temperature (SST) 
front Gradient in sst (Front) 
dice Distance to sea-ice (Dice) 
adt Absolute dynamic topography (sea level above geoid) (Adt) 
prim Annual primary production (Prim) 
daylen Daylength: Only included for the period October-February (Daylen) 
depth Bottom depth (Depth) 
edge Gradient in depth (Edge) 
coastd Distance to coast (CoastD) 
cold Distance to colony (ColD) 
east Degree longitude 
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To evaluate the fit of the model and guide the use of the alternative models, we inspected, for 
each model, a diagnostic plot showing the observed presences and predicted probabilities. In 
addition, we investigated the adjusted R2 and the proportion of deviance explained (Appendix 
6.2; Figure 3.6). The proportion of deviance explained by the SDMs ranged from 0.18 to 0.98 
with a median of 0.63. A larger proportion of deviance was explained when the birds were con-
centrated around the breeding colony during May to July (Figure 3.6). The models of fulmars 
and kittiwakes explained slightly less variation during autumn (fulmars) and winter (kittiwakes) 
compared to the other species. This pattern is probably due to a more widespread pelagic dis-
tribution among fulmars and kittiwakes.  

 
 

 
 
Figure 3.5. Diagnostics of SDMs of Brünnich’s guillemots from Bjørnøya in December. Black dots are recorded 
presences and increasing intensity of red are the predicted likelihood of occurrence from the models. Non-grey area 
is the species’ habitat. Top: Model 1; full model. Note false predictions in Davies Strait (west) and Kola coast (east). 
Bottom: Model 2; full model plus an east-west variable. 
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For each species, examples of diagnostic plots are shown in Figures 3.7-3.17. Note that the 
predictions were done on environmental variables for 2017. In general, the predictions fit the 
observations well, however, in a few cases the model made non-zero predictions in areas where 
there were no observed presences. This was for example the case for common guillemots from 
Jan Mayen in December, where the model predicted relatively high probabilities in the North Sea 
(Figure 3.12). Apparently, the environmental conditions in this area were suitable, but we had no 
observations of common guillemots from Jan Mayen there. Common guillemots from Isle of May 
reside in the North Sea during winter, confirming that this area is suitable for common guillemots. 
This example illustrates the problems associated with using environmental models to predict the 
spatial distribution of migrating animals or animals that for some reasons are restricted to a spe-
cific geographical area: They will not occupy all areas that have favourable environmental con-
ditions. Another example that nicely illustrates this point, is the Atlantic puffins from Røst in Sep-
tember (Figure 3.16). Most recorded occurrences in September were found in the Barents Sea 
with a few observations in the Greenland/Norwegian Sea. Besides high probabilities in the Bar-
ents Sea, the model also predicted relatively high probabilities along the coast of East Green-
land. Interestingly, this is also the direction of the migration; the birds migrate from the Barents 
Sea across the Greenland Sea, along the coast of East Greenland and over winter in the Den-
mark Strait, the Irminger Sea and in Icelandic waters (Figure 3.17).  
 
Table 3.5. Species distribution models (SDMs). Number of colonies, months and model type for each species. 
For specification of model type see Table 3.4.  

   Number of models 
Species Colonies Months Model 1 Model 2 Model 3 Model 4 No model 
Northern fulmar 7 12 78 0 0 2 4 
Black-legged kittiwake 15 12 156 1 6 10 7 
Common guillemot 10 12 98 0 17 5 0 
Brünnich's guillemot 10 12 83 10 8 9 10 
Little auk 5 8 40 0 0 0 0 
Atlantic puffin 10 12 94 7 7 8 4 
Sum   549 18 38 34 25 

 

 
Figure 3.6. Proportion of deviance explained from monthly Species Distribution Models of six seabird species. 
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Figure 3.7. Observed presence and predictions from SDMs of Northern fulmar from Langanes and Skalfandi 
(Iceland) in June (top) and September (bottom). Black dots are recorded presences and increasing intensity of 
red is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 

Northern fulmar,
Langanes & Skalfandi
June
Dev expl = 0.75

Northern fulmar,
Langanes & Skalfandi
September
Dev expl = 0.21



NINA Report 1657 
 

37 

 
Figure 3.8. Observed presence and predictions from SDMs of Northern fulmar from Langanes and Skalfandi 
(Iceland) in December (top) and March (bottom). Black dots are recorded presences and increasing intensity of 
red is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 



NINA Report 1657 
 

38 

 
Figure 3.9. Observed presence and predictions from SDMs of black-legged kittiwake from Isle of May (Scotland) 
in June (top) and September (bottom). Black dots are recorded presences and increasing intensity of red is the 
predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 

Black-legged kittiwake
Isle of May
June
Dev expl = 0.90

Black-legged kittiwake
Isle of May
September
Dev expl = 0.40
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Figure 3.10. Observed presence and predictions from SDMs of black-legged kittiwake from Isle of May (Scot-
land) in December (top) and March (bottom). Black dots are recorded presences and increasing intensity of red 
is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 

  

Black-legged kittiwake
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Dev expl = 0.39

Black-legged kittiwake
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Dev expl = 0.43
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Figure 3.11. Observed presence and predictions from SDMs of common guillemot from Jan Mayen (Norwegian 
Sea) in June (top) and September (bottom). Black dots are recorded presences and increasing intensity of red 
is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 

Common guillemot
Jan Mayen
June
Dev expl = 0.88

Common guillemot
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Dev expl = 0.46
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Figure 3.12. Observed presence and predictions from SDMs of common guillemot from Jan Mayen (Norwegian 
Sea) in December (top) and March (bottom). Black dots are recorded presences and increasing intensity of red 
is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 

  

Common guillemot
Jan Mayen
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Dev expl = 0. 37

Common guillemot
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Figure 3.13. Observed presence and predictions from SDMs of Brünnich’s guillemot from Bjørnøya (Barents 
Sea) in June (top) and September (bottom). Black dots are recorded presences and increasing intensity of red 
is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 
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Figure 3.14. Observed presence and predictions from SDMs of Brünnich’s guillemot from Bjørnøya (Barents 
Sea) in December (top) and March (bottom). Black dots are recorded presences and increasing intensity of red 
is the predicted likelihood of occurrence from the models. Non-grey area is the species’ habitat. 

Brünnich’s guillemot
Bjørnøya
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Dev expl = 0. 68
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Figure 3.15. Observed presence and predictions from SDMs of little auk from Hornsund (Svalbard) in September 
(top), December (middle) and March (bottom). Note that models were not conducted for little auks from May to 
August. Black dots are recorded presences and increasing intensity of red is the predicted likelihood of occur-
rence from the models. Non-grey area is the species’ habitat. 
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Figure 3.16. Observed presence and predictions from SDMs of Atlantic puffin from Røst (Norway) in June (top) 
and September (bottom). Black dots are recorded presences and increasing intensity of red is the predicted 
likelihood of occurrence from the models. Non-grey area is the species’ habitat. 
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Figure 3.17. Observed presence and predictions from SDMs of Atlantic puffin from Røst (Norway) in December 
(top) and March (bottom). Black dots are recorded presences and increasing intensity of red is the predicted 
likelihood of occurrence from the models. Non-grey area is the species’ habitat. 
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4 Abundance maps 
 
Species Distribution Models of presence-background data cannot predict the true probability of 
occurrence or abundance of a species. The predicted values from the models represent the 
relative likelihood of occurrence, which is proportional to the probability of occurrence (Guillera-
Arroita et al. 2015). In other words, the red colouring in Figures 3.7-3.17 are habitat maps show-
ing the relative occurrence of birds from the different breeding populations. In order to obtain 
realistic and unbiased estimates of abundances, we need to weight the predictions from the 
models with a factor representing population sizes. Accordingly, the predictions from each SDM 
must be weighted by the size of the population which the model represent.  
 
Obviously, each model represents the breeding population of the colony where the birds were 
tagged. In addition, it is likely that neighbouring colonies have similar habitat preferences and 
migration patterns. Thus, the model could also represent a larger population of colonies close to 
the model colony. The network of SEATRACK colonies was designed to be sufficiently fine-
meshed and representative of a large part of the Northeast Atlantic populations of the different 
species. 
 
To generate representative abundance maps for each seabird species we 

1. Compiled data of breeding populations to generate a colony dataset for the Northeast 
Atlantic 

2. Used the position data from the SEATRACK colonies to investigate how the overlap in 
winter habitat changed with distance between breeding colonies 

3. Based on the analyses in 2, we assigned colonies in the colony database to model-
colonies 

4. Used the SDMs to predict habitat maps for each assigned colony 
5. Weighted each habitat map with the corresponding breeding population size 

 
The resulting maps represent estimates of the monthly density distribution of breeding birds from 
each colony. By adding the densities from different maps, it is possible to generate maps of the 
distribution of birds belonging to breeding populations from different nations, regions or ocean 
areas. 

4.1 Colony data 
We compiled data from different sources to generate a representative dataset of the breeding 
populations of the six seabird species in the Northeast Atlantic. Data sources are given in Table 
4.1. and a map showing all locations is given in Figure 4.1. Note that we did not include seabird 
populations breeding in the Baltic Sea, Kategatt, and Southern North Sea.  
 
In several cases, especially for inaccessible places on Franz Josef Land and Novaya Zemlja, 
the counts are based on rough estimates from anecdotal observations put together from several 
sources. Estimates from Iceland, Norway, Svalbard and Jan Mayen are all updated and less 
than ten years old. Estimates from UK and Ireland are from the Seabird 2000 census (Mitchell 
et al. 2004), and counts were done between 1998 and 2003. Data from Faroe Islands were 
collected from table 3a in Frederiksen (2010) and were based on counts done between 1981 
and 2003. Note also that the definition of a “colony” differs among the regions. For example, 
Faroe Islands is included as “one” colony, while colonies on Svalbard and Norway have a much 
finer division. 
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Table 4.1. Data sources for the seabird colony data in the Northeast Atlantic 

Region Datasource Url Reference 
Norway and 
Svalbard 

SEAPOP http://www.seapop.no/no/ Fauchald et al. 
2015 

Jan Mayen SEAPOP http://www.seapop.no/no/ Gabrielsen & 
Strøm 2013 

Russia The Seabird Colony Registry of 
the Barents and White Seas 

https://www.barentsportal.com/bar-
entsportal/index.php/en/maps/99-biodi-
versity/677-seabirds-and-colonies-in-the-
barents-sea 
 
https://www.barentsportal.com/bar-
entsportal/index.php/en/general-descrip-
tion/109-biotic-components/709-seabirds  

Anker-Nilssen et 
al. 2000 
 
Strøm et al. 
2009  

Britain and 
Ireland 

Joint Nature Conservation 
Committee Seabird 2000, Sea-
bird Monitoring Programme Da-
tabase (SMP) 

www.jncc.gov.uk/smp Mitchell et al. 
2004 

Iceland Icelandic Institute of Natural 
History 

https://ni.is/dyr/fuglar/mikilvaeg-fu-
glasvaedi/sjofuglabyggdir 

 

Faroe Islands Table 3a in Frederiksen (2010) http://norden.diva-por-
tal.org/smash/record.jsf?pid=diva2%3A7
01212&dswid=-8433 

Frederiksen 
(2010) 

 
Figure 4.1. Northeast Atlantic seabird colonies (red circles) and SEATRACK model colonies (yellow stars). 
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4.2 Assigning breeding populations to SDMs 
To assign the populations from the colony dataset to the SDMs of SEATRACK colonies, we had 
to decide the limit for the maximum distance allowed to the nearest SEATRACK colony. Colonies 
nearer than the limit would be modelled by the SDM from the SEATRACK colony, while colonies 
with a longer distance would fall outside the populations we predict. To find a maximum distance, 
we first investigated how the overlap in winter habitat was related to the distance between 
SEATRACK colonies. We expected the winter-overlap between proximate colonies to be high, 
indicating that the birds from the two colonies had similar habitat preferences and migratory pat-
tern, while we expected birds from distant colonies to have less winter-overlap due to different 
habitat preferences and/or migratory pattern. The function between winter-overlap and distance 
could, in other words give indications on how far away from a modelled colony an SDM would 
have validity. 
 
To define the winter habitat, we calculated for each colony, the Utility Distribution (UD) based on 
the kernel of all positions from November until February, combining IRMA and GLS positions. 
Kernels were calculated using function kernelUD from package {adehabitatHR} with smoothing 
parameter (h) equal to 100 km. We used the Volume of Intersection (VI) (Fieberg & Kochanny, 
2005) between UDs as a measure of overlap in winter habitat between all pairs of colonies. The 
VI index ranges between zero, for home ranges with no overlap, and one for home ranges with 
identical UDs. VIs were calculated using function kerneloverlap from package {adehabitatHR}. 
 
The matrix of overlap indices (VIs) between colonies was plotted against the corresponding ma-
trix of distances. To calculate the distance between colonies, we decided to use the shortest 
ocean-distance (i.e., the shortest distance over sea). We used function shortestPath from pack-
age {gdistance} to calculate the shortest ocean-distance, using the land mask as a transition 
layer. Because the VI index has a range between 1 and 0, we expected the relationship between 
winter habitat overlap and distance to follow a (decreasing) logistic function. Accordingly, we 
fitted the relationship using the nls function with the formula y ~ 1/(1 + exp(-a * (x - b))), where y 
is the VI index and x is distance. a and b are parameters to be estimated. 
 
Setting a short limit for the maximum allowed distance would exclude a large proportion of the 
populations included in the sample. To investigate how the distance limit affected the proportion 
of populations included, we calculated the shortest ocean-distance between all colonies in the 
colony dataset and the nearest SEATRACK colony and plotted it against the corresponding pro-
portion of the total population. The plots of overlap and population proportion were combined in 
the same figure for each of the six species (Figure 4.2-4.7). As expected, the overlap in winter 
habitat decreased with increasing distance between colonies. There were however some differ-
ences between species. The negative trend was especially weak for kittiwakes (Figure 4.3). For 
this species, the overlap was relatively high and did decrease only slightly for increasing dis-
tance, suggesting that the distance between colonies had little impact on differences in habitat 
preference or migratory pattern.  
 
For all species the overlap ranged between 0.4 and 0.8 for distances less than 500 km. Except 
for kittiwakes, the overlap was between 0.2 and 0.4 for distances between 500 and 1000 km and 
decreased further to less than 0.2 for distances above 1000 km. For all species, more than 80% 
of the Northeast Atlantic population were covered with a maximum distance to nearest model 
colony equal to 500 km. 
 
Based on the analyses above, we decided to use the same limit for maximum distance to nearest 
model colony for all species. The limit was set to 400 km. Using this limit, the proportion of the 
Northeast Atlantic population covered was 0.74 for Northern fulmars, 0.83 for black-legged kitti-
wakes, 0.77 for common guillemots, 0.96 for Brünnich’s guillemots, 0.89 for little auks and 0.94 
for Atlantic puffin. The coverage and assignment of model colonies are shown for each species 
in Figure 4.8-4.13. 
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Figure 4.2. Northern fulmar. Overlap in winter habitat as a function of distance between colonies and proportion of 
colonies included in the analysis for increasing limit of maximum allowed distance to model colony. 
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Figure 4.3. Black-legged kittiwake. Overlap in winter habitat as a function of distance between colonies and propor-
tion of colonies included in the analysis for increasing limit of maximum allowed distance to model colony. 
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Figure 4.4. Common guillemot. Overlap in winter habitat as a function of distance between colonies and proportion 
of colonies included in the analysis for increasing limit of maximum allowed distance to model colony. 
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Figure 4.5. Brünnich’s guillemot. Overlap in winter habitat as a function of distance between colonies and proportion of 
colonies included in the analysis for increasing limit of maximum allowed distance to model colony. 
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Figure 4.6. Little auk. Overlap in winter habitat as a function of distance between colonies and proportion of colonies 
included in the analysis for increasing limit of maximum allowed distance to model colony. 
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Figure 4.7. Atlantic puffin. Overlap in winter habitat as a function of distance between colonies and proportion of 
colonies included in the analysis for increasing limit of maximum allowed distance to model colony. 
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Figure 4.8.  Northern fulmar. Assignment of Northeast Atlantic colonies (coloured circles) to SEATRACK model colonies 
(coloured stars). Maximum allowed distance to nearest model colony was 400 km. White circles are colonies not cov-
ered by the design (distance > 400 km from the nearest model colony). Circle size indicates population size. The design 
covered 74% of the total population. 

 
Figure 4.9. Black-legged kittiwake. Assignment of Northeast Atlantic colonies (coloured circles) to SEATRACK model 
colonies (coloured stars). Maximum allowed distance to nearest model colony was 400 km. White-filled circles are 
colonies not covered by the design (distance > 400 km from the nearest model colony). Circle size indicates popula-
tion size.  The design covered 83% of the total population. 
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Figure 4.10. Common guillemot. Assignment of Northeast Atlantic colonies (coloured circles) to SEATRACK model 
colonies (coloured stars). Maximum allowed distance to nearest model colony was 400 km. White-filled circles are 
colonies not covered by the design (distance > 400 km from the nearest model colony). Circle size indicates popula-
tion size. The design covered 77% of the total population. 

 
Figure 4.11.  Brünnich’s guillemot. Assignment of Northeast Atlantic colonies (coloured circles) to SEATRACK model 
colonies (coloured stars). Maximum allowed distance to nearest model colony was 400 km. White-filled circles are 
colonies not covered by the design (distance > 400 km from the nearest model colony). Circle size indicates popula-
tion size. The design covered 96% of the total population. 
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Figure 4.12.  Little auk. Assignment of Northeast Atlantic colonies (coloured circles) to SEATRACK model colonies 
(coloured stars). Maximum allowed distance to nearest model colony was 400 km. White-filled circles are colonies 
not covered by the design (distance > 400 km from the nearest model colony). Circle size indicates population size. 
The design covered 89% of the total population. 

 
Figure 4.13.  Atlantic puffin. Assignment of Northeast Atlantic colonies (coloured circles) to SEATRACK model colonies 
(coloured stars). Maximum allowed distance to nearest model colony was 400 km. White-filled circles are colonies 
not covered by the design (distance > 400 km from the nearest model colony). Circle size indicates population size. 
The design covered 94% of the total population. 
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4.3 Predictions 
In the last step, the Species Distribution Models (SDMs) described in section 3.2 were used to 
predict the monthly distribution of the six seabird species in the Northeast Atlantic. The predic-
tions were done for all colonies assigned to a model colony (i.e., colonies less than 400 km from 
a model colony, see Figures 4.8-4.13). This design covered from 74% (Northern fulmar) to 99% 
(Brünnich’s guillemot) of the Northeast Atlantic breeding populations (see 4.2).  
 
Although the models were based on data from 2012-2017, with the most recent positions col-
lected in summer 2017, we decided to use environmental variables from 2017-18 in the predic-
tions. The reason behind this decision was partly to provide predictions based on the most recent 
environmental conditions, and partly because we wanted to use the GLS data collected in 2017-
18 as an independent dataset to validate the SDMs. This work will not be presented in the pre-
sent report but will be completed as soon as the data collected in 2018 have been compiled and 
are ready for analyses.  
 
While the environmental predictors were the same for all colonies, one important predictor was 
colony specific, namely distance to colony. Thus, predictions had to be done separately for each 
colony, and to save computer time, we did not provide predictions for very small colonies (e.g; 
colonies with less than 9 pairs). 
 
Predictions were done on a 0.1 x 0.1 degree geographical raster covering the habitat defined for 
each species (i.e., the area from where background points were drawn, see 3.2.3). Raster cells 
outside the defined habitat were assigned zero values. 
 
The predictions from the SDMs give the relative likelihood of occurrence, and to scale these 
values to abundances we used the following equation:  

𝑛𝑛�𝑖𝑖 = 𝑁𝑁
𝑝̂𝑝𝑖𝑖𝑎𝑎𝑖𝑖
∑ 𝑝̂𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

 

Where 𝑛𝑛�𝑖𝑖 is the predicted number of birds from a colony in raster cell i, N is the number of 
breeding birds in the colony (i.e, colony size),  𝑝̂𝑝𝑖𝑖 is the relative likelihood of occurrence predicted 
by the model and ai is the area of raster cell i. Note that the equation controls for the area of the 
raster cells. This is because the cell-area varies in a geographic grid, with cells having smaller 
areas in the north. 
 
In total, the resulting raster dataset comprises 9619 distribution maps, one map for each combi-
nation of species, month and colony. For most purposes, it will be necessary to aggregate the 
rasters of colonies belonging to the same region, nation or ocean area. For example, in Figure 
4.14, we have aggregated the abundance predictions of Atlantic puffin in September using all 
colonies covered by the SEATRACK design.  
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Figure 4.14.  The estimated distribution of Northeast Atlantic populations of adult Atlantic puffin (Fratercula arctica) in 
September. Breeding populations included in the predictions are indicated by red filled circles. The maps cover approxi-
mately 94% of the Northeast Atlantic breeding population. 

4.3.1 Datasets of modelled seabird abundances 

The model predictions were first stored as standard geographical (WGS 84) rasters for each 
colony covered by the design. Raster extent is -78°E to 80°E, 35°N to 85°N (latitude) with a 
spatial resolution of 0.1 x 0.1 degrees. Each raster cell is given a value representing the predicted 
number of breeding birds from a given colony within the raster cell. Note that raster cells outside 
the defined habitat were assigned zero values. For easier storage and distribution, the rasters 
were combined and archived as NetCDF1 files separately for each species. The NetCDF format 
is self-describing (it includes information about the data content, i.e. metadata), portable (it works 
across computer platforms), scalable (it is possible to work only on subsets of the whole dataset), 
and appendable (one can add new data to an existing dataset). The NetCDF file format can be 
read by most geographic information system software, such as GRASS, Quantum GIS, or 
ArcGis. It can also easily be read and handled using the free and open source R Statistical 
Software (R Development Core Team 2018), and here we provide a baseline R-script that will 
allow reading in the SEATRACK NetCDF output files, extracting specific data, and aggregating 
seabird modelled abundances among colonies, e.g. to cover a larger geographic region 
(Appendix 6.3). 

                                                   
 
1 https://doi.org/10.5065/D6H70CW6 

https://doi.org/10.5065/D6H70CW6
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4.3.2 Limitations and caveats 

The datasets and analyses are subject to several important limitations and caveats. One im-
portant limitation related to the available position dataset is that the sample of tagged birds was 
limited to breeding individuals. Thus, we do not have information on the distribution of non-breed-
ers, including immature birds. Immatures might constitute a relatively large part of the population, 
and different migration pattern among life-stages could result in a biased interpretation of the 
distribution pattern. Another issue that could result in biases, is the assumption that colonies 
close to each other have similar migration pattern. Although this assumption was supported by 
the overlap analyses, cases where the assumption do not hold could result in wrong predictions 
for some colonies. 
 
Improving the coverage of the populations, both with respect to the sample of colonies and with 
respect to life-stages included in the sample, could reduce biases attributed to these effects. To 
assess the effect of biases, and thereby assessing the validity of the distribution maps, it is pos-
sible to compare the predicted distribution with observations of seabirds at sea. Seabird at sea 
datasets are available for the Northeast Atlantic (Fauchald 2011), and analyses of how the pre-
dictions from the present models fit the data from observations at sea is a task that will be un-
dertaken in a next step. These analyses will give valuable information on possible weaknesses 
and limitations of the present dataset. 
 
It is important to notice that the error in the positioning of the birds is relatively large (more than 
180 km). High observation error makes it difficult to capture fine-scale distribution pattern and 
furthermore, the precision of the resulting estimated distribution is relatively low (i.e., the predic-
tions will have large confidence intervals). The observation errors can to a certain degree be 
compensated with large sample sizes. The observations used in the models are however not 
independent of each other. This is because the observations include positions from tracks of the 
same individuals. These dependencies will reduce the “effective” sample size and consequently 
increase the error in the predictions. Models based on a few individuals might accordingly result 
in erroneous predictions. Because of the dependencies in the datasets and because the dataset 
consists of both GLS positions and positions from the IRMA model, it is difficult to assess the 
resulting error from the models using standard statistical procedures. One way to assess the 
error and predictive power of the models is to compare the SDMs with an independent position 
dataset. This will be done by comparing the predictions from the SDMs with the dataset collected 
in 2017-18. These analyses will evaluate the predictive power and performance of each SDM 
and will give valuable information with respect to optimization of the sampling design. 
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6 Appendix 

6.1 Summary of the algorithm used to determine a Potential Point 
Area (Ppa) 

The output from this procedure (i.e. the Ppa) will allow generating a new location Ni between two 
known locations A and B. All distances are calculated as geodesics using function distGeo from 
package geosphere (Hijmans 2017) and the parameters of the WGS84 ellipsoid. 
 

  

a) IDENTIFY ALL TIME GAPS THAT ARE > 0.5 DAY AND < 120 DAYS 
 
b) LOOP THROUGH EACH GAP SEQUENTIALLY 
 

Load species-specific Speed Model which provides a value of maximum 
movement rate given the time elapsed between two consecutive locations 
 
Load individual-specific Longitude values (previously extracted from the 
raw original dataset) 
 
Integrate individual-specific activity data to identify breeding period 
and colony attendance 
 
Create timestamps at 12-h intervals to cover the entire period of the data 
gap 
 
b.1) GENERATE PPAS AT EACH TIMESTAMP IN A RANDOM SEQUENCE, FOLLOWING 
TECHNITIS ET AL. (2016), I.E. NOT IN CHRONOLOGICAL ORDER 
 
 

b.1.1 - CALCULATE MAXIMUM RANGES 
     

Calculate maximum ranges at A and B based on two parameters: 
- Maximum movement rates between A and Ni and between Ni and B 
- Time difference between A and Ni and between Ni and B 
This generates two range circles (SpatialPolygons) 
  
Do maximum ranges overlap? 
 NO: Increase maximum movement rates by 5% increments if they 

are below the speed threshold (otherwise no new location is 
generated) 

 YES: Calculate Ppa based on maximum ranges 
 

b.1.2 - EXCLUDE LANDMASSES & AREAS COVERED WITH SEA-ICE 
 

Crop the Ppa to section that does not overlap landmasses or sea-ice 
areas (removes the possibility to create any new location above land 
or sea ice) 

 
Is Ppa non-NULL after excluding land and sea-ice areas? 
 NO: Increase maximum movement rates by 5% increments as long 

as they are below the speed threshold (otherwise no new 
location is generated) 

 YES: No problem 
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b.1.3 TAKING POLAR DAY/NIGHT AREA (PDNA) INTO ACCOUNT 
 

The PDNA is defined as the area north of the lowest latitude at which 
the sun does not rise (polar night) or set (polar day) for a given 
date. Civil twilight (i.e. a solar angle of 6° below the horizon), 
was used as threshold for identifying sunrise/sunset events 

 
Are there locations recorded at timestamp Ti in the raw dataset? 
 YES: Twilight events thus occurred, and the new location is 

constrained outside of the PDNA 
 NO: IRMA assumes this is due to the absence of twilight events 

(i.e. the bird was either in complete darkness (polar night) 
or complete daylight (polar day) 24-h a day. The new location 
is constrained to be within the PDNA only for short gaps (<10 
days) that start and finish inside of the PDNA, otherwise no 
constraint is applied 
 
Do Ppa and PDNA overlap? 
 NO: Increase maximum movement rates by 5% increments 

until Ppa and PDNA overlap and if movement rates < 
speed threshold. If the speed threshold if reached, 
increase the size of the longitude buffer, by 
extracting longitude data over increasingly longer 
periods (by 1-day increments), until a maximum of 10 
days is reached. If the time period threshold is 
reached, then longitude buffer is set to NULL 

 YES: Crop the Ppa to area intersecting the longitude 
buffer 

 
 

b.1.4 - RESTRICT Ppa TO MOST LIKELY LONGITUDES 
    

Extract range of longitudes from actual GLS-based data (+/- 1 day) 
and create a polygon (SpatialPolygon) delimited by the longitudes 
(SpatialPolygon) – value is NULL if no data available for the 
considered period/individual. Following step ignored if no longitude 
buffer can be determined 

 
Do Ppa and longitude buffer overlap? 
 NO: Increase maximum movement rates by 5% increments until Ppa 

and longitude buffer overlap and if movement rates < speed 
threshold. If the speed threshold if reached, increase the 
size of the longitude buffer, by extracting longitude data 
over increasingly longer periods (by 1-day increments), until 
a maximum of 10 days is reached. If the time period threshold 
is reached, then longitude buffer is set to NULL 

 YES: Crop the Ppa to area intersecting the longitude buffer 
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6.2 Model specification, sample size and model diagnostics for each 
Species Distribution Model (SDM) 

Nind is number of individuals included in the sample, IRMApos is the number of positions gen-
erated from IRMA, GLSpos is the number of GLS positions, Add indicates whether positions from 
15 day before and after month was included in the sample (1 = included, 0 = not included). Model 
indicate type of model conducted (1 = full model, 2 = full model plus east variable, 3 = simplified 
model, 4 = distance to colony only; see 2.2.5 for further specifications). Sample included in the 
models, after removing positions with missing environmental variables, is given as: nPres (num-
ber of presence positions) and nBackval (number of background positions drawn randomly from 
the habitat of the species). RsqAdj is the adjusted R-square value from the model and DevExp 
is the proportion of deviance explained by the model. 
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Little auk Bjørnøya 1 29 563 2312 0 1 2784 59744 0.238 0.394 
Little auk Bjørnøya 2 29 934 1673 0 1 2567 59808 0.196 0.343 
Little auk Bjørnøya 3 29 2852 0 0 1 2818 59782 0.172 0.320 
Little auk Bjørnøya 4 29 582 950 0 1 1506 59775 0.407 0.547 
Little auk Bjørnøya 5 0 0 0 0 NA NA NA NA NA 
Little auk Bjørnøya 6 0 0 0 0 NA NA NA NA NA 
Little auk Bjørnøya 7 0 0 0 0 NA NA NA NA NA 
Little auk Bjørnøya 8 0 0 0 0 NA NA NA NA NA 
Little auk Bjørnøya 9 11 698 40 0 1 697 39588 0.219 0.468 
Little auk Bjørnøya 10 29 691 648 0 1 1266 59441 0.141 0.359 
Little auk Bjørnøya 11 29 369 2499 0 1 2744 59633 0.180 0.326 
Little auk Bjørnøya 12 29 742 2234 0 1 2805 59695 0.285 0.417 
Little auk Franz Josef Land 1 36 1748 734 0 1 2454 39845 0.307 0.467 
Little auk Franz Josef Land 2 36 75 1507 0 1 1447 39870 0.420 0.577 
Little auk Franz Josef Land 3 2 124 0 1 1 433 39851 0.233 0.520 
Little auk Franz Josef Land 4 2 26 6 1 1 77 19924 0.294 0.652 
Little auk Franz Josef Land 5 0 0 0 0 NA NA NA NA NA 
Little auk Franz Josef Land 6 0 0 0 0 NA NA NA NA NA 
Little auk Franz Josef Land 7 0 0 0 0 NA NA NA NA NA 
Little auk Franz Josef Land 8 0 0 0 0 NA NA NA NA NA 
Little auk Franz Josef Land 9 10 496 44 0 1 391 29681 0.421 0.666 
Little auk Franz Josef Land 10 36 531 509 0 1 972 39626 0.361 0.589 
Little auk Franz Josef Land 11 36 1807 591 0 1 2266 39801 0.303 0.471 
Little auk Franz Josef Land 12 36 2268 210 0 1 2440 39796 0.262 0.423 
Little auk Hornsund 1 53 631 2841 0 1 3431 19913 0.459 0.497 
Little auk Hornsund 2 53 1036 2018 0 1 3015 19918 0.409 0.451 
Little auk Hornsund 3 47 3100 0 0 1 3076 19919 0.393 0.438 
Little auk Hornsund 4 47 550 631 0 1 1129 19913 0.414 0.536 
Little auk Hornsund 5 0 0 0 0 NA NA NA NA NA 
Little auk Hornsund 6 0 0 0 0 NA NA NA NA NA 
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Little auk Hornsund 7 0 0 0 0 NA NA NA NA NA 
Little auk Hornsund 8 2 0 2 0 NA NA NA NA NA 
Little auk Hornsund 9 15 780 59 0 1 802 19820 0.353 0.527 
Little auk Hornsund 10 53 726 772 0 1 1457 19799 0.338 0.460 
Little auk Hornsund 11 53 273 3074 0 1 3322 19856 0.473 0.511 
Little auk Hornsund 12 53 801 2669 0 1 3418 19899 0.541 0.558 
Little auk Isfjorden 1 15 299 791 0 1 1052 29861 0.204 0.394 
Little auk Isfjorden 2 15 310 610 0 1 890 29905 0.169 0.333 
Little auk Isfjorden 3 13 930 0 0 1 917 29883 0.222 0.407 
Little auk Isfjorden 4 13 174 185 0 1 346 29882 0.238 0.530 
Little auk Isfjorden 5 0 0 0 0 NA NA NA NA NA 
Little auk Isfjorden 6 0 0 0 0 NA NA NA NA NA 
Little auk Isfjorden 7 0 0 0 0 NA NA NA NA NA 
Little auk Isfjorden 8 7 16 58 0 NA NA NA NA NA 
Little auk Isfjorden 9 10 620 87 0 1 640 19769 0.287 0.497 
Little auk Isfjorden 10 15 595 231 0 1 808 29711 0.248 0.437 
Little auk Isfjorden 11 15 290 785 0 1 1055 29825 0.275 0.458 
Little auk Isfjorden 12 15 422 692 0 1 1072 29856 0.228 0.440 
Little auk Kongsfjorden 1 16 107 1319 0 1 649 29869 0.283 0.516 
Little auk Kongsfjorden 2 16 418 862 0 1 622 29908 0.132 0.343 
Little auk Kongsfjorden 3 16 1364 0 0 1 643 29908 0.087 0.296 
Little auk Kongsfjorden 4 16 245 284 0 1 283 29892 0.137 0.419 
Little auk Kongsfjorden 5 0 0 0 0 NA NA NA NA NA 
Little auk Kongsfjorden 6 0 0 0 0 NA NA NA NA NA 
Little auk Kongsfjorden 7 0 0 0 0 NA NA NA NA NA 
Little auk Kongsfjorden 8 3 8 43 1 1 142 29674 0.306 0.639 
Little auk Kongsfjorden 9 10 646 106 0 1 239 29658 0.213 0.547 
Little auk Kongsfjorden 10 16 637 319 0 1 316 29711 0.079 0.318 
Little auk Kongsfjorden 11 16 110 1327 0 1 526 29825 0.167 0.430 
Little auk Kongsfjorden 12 16 186 1276 0 1 502 29836 0.378 0.623 
 Puffin Anda 1 15 131 1050 0 1 1117 29744 0.342 0.530 
 Puffin Anda 2 15 385 643 0 1 986 29752 0.214 0.433 
 Puffin Anda 3 13 992 0 0 1 938 29751 0.356 0.533 
 Puffin Anda 4 13 461 493 0 1 866 29719 0.682 0.744 
 Puffin Anda 5 8 189 21 0 4 197 29755 0.654 0.818 
 Puffin Anda 6 3 180 0 0 4 161 9920 0.854 0.903 
 Puffin Anda 7 3 186 0 0 4 179 9900 0.784 0.860 
 Puffin Anda 8 15 258 280 0 1 535 29710 0.384 0.636 
 Puffin Anda 9 15 970 170 0 1 1140 29750 0.607 0.732 
 Puffin Anda 10 15 932 240 0 1 1153 29738 0.345 0.517 
 Puffin Anda 11 15 175 960 0 1 1075 29753 0.349 0.533 
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 Puffin Anda 12 15 315 863 0 1 1128 29752 0.407 0.574 
 Puffin Faroe Islands 1 6 0 558 1 3 1116 29753 0.120 0.279 
 Puffin Faroe Islands 2 6 169 343 1 3 1070 19851 0.225 0.377 
 Puffin Faroe Islands 3 6 558 0 1 1 1070 19833 0.365 0.523 
 Puffin Faroe Islands 4 6 117 423 1 1 1098 19829 0.288 0.468 
 Puffin Faroe Islands 5 6 184 374 1 1 1077 19804 0.450 0.575 
 Puffin Faroe Islands 6 6 330 120 1 1 901 19826 0.735 0.803 
 Puffin Faroe Islands 7 4 277 95 1 4 753 29727 0.751 0.820 
 Puffin Faroe Islands 8 6 129 364 1 1 935 29725 0.549 0.668 
 Puffin Faroe Islands 9 6 458 82 1 1 1058 19827 0.419 0.561 
 Puffin Faroe Islands 10 6 436 122 1 3 1066 19815 0.187 0.354 
 Puffin Faroe Islands 11 6 10 530 1 3 1094 19803 0.152 0.327 
 Puffin Faroe Islands 12 6 0 558 1 3 1098 29715 0.089 0.266 
 Puffin Grimsey 1 27 8 2286 0 1 2294 29740 0.329 0.467 
 Puffin Grimsey 2 27 669 1433 0 1 2100 29735 0.295 0.437 
 Puffin Grimsey 3 27 2294 0 0 2 2256 29734 0.317 0.469 
 Puffin Grimsey 4 27 567 1653 0 1 2136 29739 0.397 0.494 
 Puffin Grimsey 5 27 702 543 0 1 1205 29745 0.791 0.845 
 Puffin Grimsey 6 8 600 0 0 1 574 19815 0.936 0.946 
 Puffin Grimsey 7 20 666 45 0 1 682 29701 0.875 0.910 
 Puffin Grimsey 8 28 727 1607 0 1 2215 29705 0.515 0.605 
 Puffin Grimsey 9 28 1873 369 0 2 2223 29708 0.591 0.687 
 Puffin Grimsey 10 27 1795 499 0 1 2254 29684 0.459 0.571 
 Puffin Grimsey 11 27 16 2204 0 1 2220 29732 0.461 0.569 
 Puffin Grimsey 12 27 16 2278 0 1 2291 29709 0.431 0.541 
 Puffin Hjelmsøya 1 20 456 909 0 1 1332 29738 0.367 0.548 
 Puffin Hjelmsøya 2 20 432 798 0 1 1196 29740 0.353 0.535 
 Puffin Hjelmsøya 3 19 1302 0 0 1 1197 29748 0.633 0.732 
 Puffin Hjelmsøya 4 19 384 499 0 1 838 29730 0.727 0.818 
 Puffin Hjelmsøya 5 0 0 0 0 NA NA NA NA NA 
 Puffin Hjelmsøya 6 0 0 0 0 NA NA NA NA NA 
 Puffin Hjelmsøya 7 0 0 0 0 NA NA NA NA NA 
 Puffin Hjelmsøya 8 19 98 247 0 NA NA NA NA NA 
 Puffin Hjelmsøya 9 20 1151 172 0 1 1323 29706 0.613 0.731 
 Puffin Hjelmsøya 10 20 1059 305 0 1 1361 29748 0.568 0.702 
 Puffin Hjelmsøya 11 20 514 804 0 1 1318 29752 0.492 0.637 
 Puffin Hjelmsøya 12 20 970 393 0 1 1298 29753 0.357 0.539 
 Puffin Hornøya 1 51 2930 2835 0 1 5708 39660 0.677 0.709 
 Puffin Hornøya 2 51 1847 3393 0 1 5126 39698 0.642 0.686 
 Puffin Hornøya 3 50 5642 0 0 1 5551 39655 0.765 0.785 
 Puffin Hornøya 4 50 2328 2691 0 1 4805 39644 0.900 0.903 
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 Puffin Hornøya 5 27 2249 10 0 1 2108 39657 0.927 0.936 
 Puffin Hornøya 6 26 2160 0 0 1 2006 29727 0.921 0.932 
 Puffin Hornøya 7 26 2232 0 0 1 2104 29736 0.858 0.881 
 Puffin Hornøya 8 51 1994 1851 0 1 3767 39672 0.730 0.773 
 Puffin Hornøya 9 51 4851 789 0 1 5604 39638 0.749 0.771 
 Puffin Hornøya 10 51 4564 1264 0 1 5806 39612 0.762 0.778 
 Puffin Hornøya 11 51 1413 4220 0 1 5607 39633 0.730 0.755 
 Puffin Hornøya 12 51 4848 921 0 1 5733 39637 0.661 0.695 
 Puffin Isle of May 1 38 313 2614 0 3 2726 59478 0.607 0.699 
 Puffin Isle of May 2 37 989 1569 0 1 2389 59508 0.565 0.690 
 Puffin Isle of May 3 36 2728 0 0 3 2496 59469 0.559 0.691 
 Puffin Isle of May 4 36 1354 1191 0 1 2256 59487 0.796 0.845 
 Puffin Isle of May 5 33 1770 566 0 1 1985 59439 0.830 0.873 
 Puffin Isle of May 6 32 1041 676 0 1 1417 59450 0.794 0.862 
 Puffin Isle of May 7 39 1575 1502 0 1 2576 59450 0.828 0.866 
 Puffin Isle of May 8 39 971 2320 0 1 2946 49550 0.745 0.772 
 Puffin Isle of May 9 39 2746 388 0 1 2831 49552 0.622 0.704 
 Puffin Isle of May 10 39 2632 618 0 1 2900 49572 0.605 0.694 
 Puffin Isle of May 11 39 449 2564 0 1 2744 49594 0.578 0.684 
 Puffin Isle of May 12 38 365 2600 0 1 2714 49584 0.645 0.730 
 Puffin Papey 1 19 4 1794 0 1 1798 29749 0.343 0.495 
 Puffin Papey 2 19 521 1131 0 2 1652 29753 0.302 0.461 
 Puffin Papey 3 19 1798 0 0 1 1785 29715 0.247 0.408 
 Puffin Papey 4 19 765 975 0 1 1682 29706 0.537 0.600 
 Puffin Papey 5 19 923 340 0 1 1232 29734 0.839 0.877 
 Puffin Papey 6 9 600 0 0 1 586 19806 0.899 0.924 
 Puffin Papey 7 14 663 77 0 1 720 39614 0.683 0.782 
 Puffin Papey 8 19 477 1261 0 1 1664 39642 0.354 0.499 
 Puffin Papey 9 19 1457 283 0 2 1721 29707 0.426 0.568 
 Puffin Papey 10 19 1414 384 0 1 1796 29735 0.393 0.518 
 Puffin Papey 11 19 38 1702 0 1 1733 29717 0.294 0.461 
 Puffin Papey 12 19 14 1784 0 2 1797 29727 0.363 0.522 
 Puffin Røst 1 57 257 4836 0 1 4870 39638 0.440 0.527 
 Puffin Røst 2 57 1705 2937 0 1 4441 39701 0.332 0.439 
 Puffin Røst 3 57 5022 0 0 1 4695 39630 0.380 0.473 
 Puffin Røst 4 57 1808 3075 0 1 4752 39639 0.706 0.712 
 Puffin Røst 5 53 1416 776 0 1 2151 39653 0.792 0.835 
 Puffin Røst 6 19 1317 3 0 4 1306 29703 0.707 0.776 
 Puffin Røst 7 25 1356 21 0 1 1367 29723 0.730 0.798 
 Puffin Røst 8 56 1416 1012 0 1 2413 29734 0.628 0.700 
 Puffin Røst 9 57 4091 816 0 1 4871 29727 0.698 0.712 
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 Puffin Røst 10 57 4098 983 0 1 4893 39646 0.408 0.488 
 Puffin Røst 11 57 617 4310 0 1 4810 39663 0.431 0.513 
 Puffin Røst 12 57 746 4336 0 2 4944 39674 0.491 0.568 
 Puffin Runde and Ålesund 1 13 39 830 0 1 853 29750 0.164 0.386 
 Puffin Runde and Ålesund 2 13 247 495 0 1 722 29741 0.146 0.360 
 Puffin Runde and Ålesund 3 12 806 0 0 1 750 29756 0.239 0.450 
 Puffin Runde and Ålesund 4 12 450 339 0 1 731 29720 0.677 0.781 
 Puffin Runde and Ålesund 5 12 404 181 0 1 550 29716 0.765 0.852 
 Puffin Runde and Ålesund 6 2 63 1 0 4 57 19837 0.581 0.813 
 Puffin Runde and Ålesund 7 9 167 105 0 4 242 19816 0.698 0.811 
 Puffin Runde and Ålesund 8 13 519 207 0 1 718 29713 0.369 0.574 
 Puffin Runde and Ålesund 9 13 739 101 0 1 818 29744 0.492 0.651 
 Puffin Runde and Ålesund 10 13 706 159 0 1 821 29756 0.245 0.421 
 Puffin Runde and Ålesund 11 13 36 801 0 1 823 29722 0.260 0.485 
 Puffin Runde and Ålesund 12 13 23 845 0 2 850 29755 0.264 0.493 
 Puffin Sklinna 1 19 152 1211 0 1 1323 29731 0.266 0.439 
 Puffin Sklinna 2 19 476 773 0 1 1211 29753 0.226 0.421 
 Puffin Sklinna 3 19 1364 0 0 1 1323 29736 0.292 0.464 
 Puffin Sklinna 4 19 670 602 0 1 1186 29720 0.704 0.762 
 Puffin Sklinna 5 17 357 238 0 1 579 29746 0.709 0.816 
 Puffin Sklinna 6 3 180 0 0 4 176 19833 0.791 0.879 
 Puffin Sklinna 7 6 218 18 0 1 228 29700 0.739 0.849 
 Puffin Sklinna 8 19 567 392 0 1 945 29714 0.429 0.602 
 Puffin Sklinna 9 19 1148 172 0 1 1317 29736 0.514 0.607 
 Puffin Sklinna 10 19 1089 273 0 1 1288 29760 0.242 0.417 
 Puffin Sklinna 11 19 121 1195 0 1 1288 29745 0.216 0.394 
 Puffin Sklinna 12 19 102 1263 0 1 1332 29714 0.279 0.454 
Fulmar Alkefjellet 1 5 239 134 0 1 369 19660 0.265 0.534 
Fulmar Alkefjellet 2 5 197 143 0 1 316 19673 0.267 0.536 
Fulmar Alkefjellet 3 5 372 0 0 1 319 19586 0.350 0.597 
Fulmar Alkefjellet 4 5 134 61 0 1 144 19634 0.212 0.550 
Fulmar Alkefjellet 5 0 0 0 0 NA NA NA NA NA 
Fulmar Alkefjellet 6 0 0 0 0 NA NA NA NA NA 
Fulmar Alkefjellet 7 0 0 0 0 NA NA NA NA NA 
Fulmar Alkefjellet 8 2 0 3 0 NA NA NA NA NA 
Fulmar Alkefjellet 9 3 208 20 0 4 226 19593 0.080 0.323 
Fulmar Alkefjellet 10 5 221 55 0 1 265 19585 0.296 0.567 
Fulmar Alkefjellet 11 5 245 115 0 1 353 19632 0.173 0.439 
Fulmar Alkefjellet 12 5 318 55 0 1 370 19643 0.301 0.525 
Fulmar Bjørnøya 1 26 2402 887 0 1 3227 29493 0.612 0.670 
Fulmar Bjørnøya 2 26 1192 1796 0 1 2927 29478 0.670 0.721 
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Fulmar Bjørnøya 3 26 3224 0 0 1 3159 29478 0.679 0.726 
Fulmar Bjørnøya 4 26 977 1027 0 1 1990 29434 0.679 0.745 
Fulmar Bjørnøya 5 3 186 0 0 1 186 9801 0.752 0.839 
Fulmar Bjørnøya 6 3 180 0 0 1 180 9812 0.814 0.880 
Fulmar Bjørnøya 7 3 186 0 0 1 183 9806 0.662 0.772 
Fulmar Bjørnøya 8 23 254 352 0 1 597 29415 0.441 0.630 
Fulmar Bjørnøya 9 26 2594 356 0 4 2892 29364 0.463 0.538 
Fulmar Bjørnøya 10 26 2498 646 0 1 3052 29396 0.631 0.684 
Fulmar Bjørnøya 11 26 1817 1363 0 1 3151 29440 0.560 0.628 
Fulmar Bjørnøya 12 26 3220 66 0 1 3226 29420 0.397 0.515 
Fulmar Eynhallow 1 44 701 3324 0 1 3919 29480 0.656 0.674 
Fulmar Eynhallow 2 44 1597 2097 0 1 3565 29449 0.586 0.615 
Fulmar Eynhallow 3 44 4030 0 0 1 3822 29449 0.451 0.518 
Fulmar Eynhallow 4 44 1363 2549 0 1 3791 29419 0.577 0.610 
Fulmar Eynhallow 5 44 1598 2159 0 1 3683 29448 0.598 0.623 
Fulmar Eynhallow 6 29 1799 1028 0 1 2777 39238 0.653 0.699 
Fulmar Eynhallow 7 44 1234 2085 0 1 3228 39196 0.674 0.703 
Fulmar Eynhallow 8 44 890 3274 0 1 4046 29326 0.476 0.483 
Fulmar Eynhallow 9 44 3408 571 0 1 3863 29428 0.277 0.307 
Fulmar Eynhallow 10 44 3268 820 0 1 3943 29387 0.216 0.280 
Fulmar Eynhallow 11 44 422 3535 0 1 3865 29450 0.393 0.426 
Fulmar Eynhallow 12 44 650 3380 0 1 3927 29434 0.545 0.567 
Fulmar Faroe Islands 1 11 45 700 0 1 739 19645 0.323 0.496 
Fulmar Faroe Islands 2 11 248 435 0 1 676 19631 0.321 0.511 
Fulmar Faroe Islands 3 11 744 0 0 1 727 19611 0.230 0.435 
Fulmar Faroe Islands 4 11 227 494 0 1 708 19626 0.254 0.418 
Fulmar Faroe Islands 5 11 351 301 0 1 650 19637 0.453 0.571 
Fulmar Faroe Islands 6 8 330 91 0 1 419 19609 0.680 0.767 
Fulmar Faroe Islands 7 10 185 304 0 1 484 29406 0.405 0.608 
Fulmar Faroe Islands 8 11 125 612 0 1 733 19585 0.297 0.429 
Fulmar Faroe Islands 9 11 627 94 0 1 712 19591 0.064 0.180 
Fulmar Faroe Islands 10 11 597 150 0 1 726 19604 0.089 0.230 
Fulmar Faroe Islands 11 11 109 610 0 1 706 19627 0.154 0.325 
Fulmar Faroe Islands 12 11 118 625 0 1 733 19670 0.189 0.359 
Fulmar Jan Mayen 1 33 1093 2519 0 1 3585 29514 0.602 0.655 
Fulmar Jan Mayen 2 33 1240 2043 0 1 3247 29487 0.553 0.634 
Fulmar Jan Mayen 3 33 3596 0 0 1 3580 29437 0.470 0.562 
Fulmar Jan Mayen 4 33 988 2325 0 1 3286 29457 0.590 0.633 
Fulmar Jan Mayen 5 22 936 357 0 1 1287 29422 0.556 0.584 
Fulmar Jan Mayen 6 12 924 11 0 1 926 29423 0.879 0.903 
Fulmar Jan Mayen 7 14 904 95 0 1 983 29405 0.711 0.727 
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Fulmar Jan Mayen 8 21 616 1052 0 1 1649 29373 0.140 0.249 
Fulmar Jan Mayen 9 29 2599 358 0 1 2903 29371 0.247 0.297 
Fulmar Jan Mayen 10 33 2429 807 0 1 3128 29383 0.208 0.290 
Fulmar Jan Mayen 11 33 568 3038 0 1 3579 29411 0.298 0.384 
Fulmar Jan Mayen 12 33 2236 1468 0 1 3668 29442 0.441 0.500 
Fulmar Jarsteinen 1 8 339 532 0 1 832 39288 0.436 0.576 
Fulmar Jarsteinen 2 8 417 378 0 1 722 39272 0.414 0.637 
Fulmar Jarsteinen 3 8 868 0 0 1 807 39271 0.336 0.573 
Fulmar Jarsteinen 4 8 426 415 0 1 773 39259 0.518 0.681 
Fulmar Jarsteinen 5 8 495 377 0 1 776 39325 0.585 0.721 
Fulmar Jarsteinen 6 8 707 167 0 1 706 39286 0.766 0.843 
Fulmar Jarsteinen 7 8 497 327 0 1 535 39198 0.618 0.753 
Fulmar Jarsteinen 8 8 348 518 0 1 523 29365 0.267 0.423 
Fulmar Jarsteinen 9 8 734 106 0 1 517 29384 0.128 0.342 
Fulmar Jarsteinen 10 8 731 139 0 1 524 29400 0.090 0.275 
Fulmar Jarsteinen 11 8 302 541 0 1 523 29409 0.193 0.379 
Fulmar Jarsteinen 12 8 351 520 0 1 539 29467 0.255 0.432 

Fulmar 
Langanes and 
Skjalfandi 1 46 841 3435 0 1 4169 29514 0.509 0.530 

Fulmar 
Langanes and 
Skjalfandi 2 46 1814 2095 0 1 3750 29496 0.643 0.665 

Fulmar 
Langanes and 
Skjalfandi 3 46 4278 0 0 1 4153 29440 0.538 0.572 

Fulmar 
Langanes and 
Skjalfandi 4 46 2187 1950 0 1 3902 29487 0.601 0.609 

Fulmar 
Langanes and 
Skjalfandi 5 45 1824 1642 0 1 3279 29438 0.513 0.565 

Fulmar 
Langanes and 
Skjalfandi 6 32 1357 267 0 1 1525 29400 0.729 0.749 

Fulmar 
Langanes and 
Skjalfandi 7 32 1458 452 0 1 1807 29385 0.569 0.605 

Fulmar 
Langanes and 
Skjalfandi 8 43 1364 1953 0 1 3234 29382 0.154 0.233 

Fulmar 
Langanes and 
Skjalfandi 9 45 3406 490 0 1 3756 29363 0.208 0.260 

Fulmar 
Langanes and 
Skjalfandi 10 46 3243 833 0 1 3851 29363 0.188 0.252 

Fulmar 
Langanes and 
Skjalfandi 11 46 677 3463 0 1 4088 29449 0.287 0.349 

Fulmar 
Langanes and 
Skjalfandi 12 46 981 3299 0 1 4206 29425 0.317 0.383 

Kittiwake Alkefjellet 1 20 10 1602 0 1 1584 19530 0.248 0.345 
Kittiwake Alkefjellet 2 20 524 948 0 1 1459 19533 0.188 0.305 
Kittiwake Alkefjellet 3 20 1612 0 0 1 1603 19518 0.178 0.284 
Kittiwake Alkefjellet 4 20 299 593 0 1 855 19497 0.066 0.186 
Kittiwake Alkefjellet 5 1 0 11 1 3 154 19534 0.034 0.249 
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Kittiwake Alkefjellet 6 0 0 0 0 NA NA NA NA NA 
Kittiwake Alkefjellet 7 0 0 0 0 NA NA NA NA NA 
Kittiwake Alkefjellet 8 3 2 3 1 3 231 19436 0.509 0.720 
Kittiwake Alkefjellet 9 9 526 23 0 1 524 19417 0.483 0.663 
Kittiwake Alkefjellet 10 20 528 459 0 1 967 19416 0.360 0.478 
Kittiwake Alkefjellet 11 20 195 1361 0 1 1546 19481 0.232 0.311 
Kittiwake Alkefjellet 12 20 8 1604 0 1 1604 19479 0.305 0.418 
Kittiwake Anda 1 52 1575 4065 0 1 5391 38999 0.373 0.385 
Kittiwake Anda 2 52 2661 2340 0 1 4770 39016 0.757 0.735 
Kittiwake Anda 3 51 5394 0 0 1 5117 38997 0.863 0.857 
Kittiwake Anda 4 51 2107 3096 0 1 4793 39020 0.906 0.904 
Kittiwake Anda 5 48 2351 331 0 1 2394 39022 0.903 0.905 
Kittiwake Anda 6 26 2220 0 0 1 1991 29194 0.927 0.924 
Kittiwake Anda 7 26 2289 5 0 1 2060 29163 0.958 0.957 
Kittiwake Anda 8 53 2858 1805 0 1 4373 38811 0.756 0.772 
Kittiwake Anda 9 53 4744 627 0 1 5202 38781 0.529 0.566 
Kittiwake Anda 10 54 3828 1791 0 1 5364 38876 0.251 0.311 
Kittiwake Anda 11 54 406 5104 0 1 5421 38979 0.350 0.380 
Kittiwake Anda 12 54 484 5157 0 1 5564 39056 0.361 0.410 
Kittiwake Bjørnøya 1 40 994 3163 0 1 3911 39044 0.247 0.311 
Kittiwake Bjørnøya 2 40 1726 1905 0 1 3474 39066 0.252 0.304 
Kittiwake Bjørnøya 3 39 3906 0 0 1 3804 38973 0.613 0.642 
Kittiwake Bjørnøya 4 39 990 1388 0 1 2342 39000 0.724 0.778 
Kittiwake Bjørnøya 5 3 124 1 0 4 125 19500 0.636 0.791 
Kittiwake Bjørnøya 6 2 120 0 0 4 120 19485 0.687 0.842 
Kittiwake Bjørnøya 7 2 124 0 0 4 124 19476 0.724 0.856 
Kittiwake Bjørnøya 8 28 202 295 0 1 491 38828 0.510 0.721 
Kittiwake Bjørnøya 9 39 3309 492 0 1 3747 38822 0.676 0.727 
Kittiwake Bjørnøya 10 40 3082 1031 0 1 3916 38811 0.373 0.417 
Kittiwake Bjørnøya 11 40 859 3211 0 1 3888 38968 0.239 0.312 
Kittiwake Bjørnøya 12 40 911 3303 0 1 3965 39009 0.323 0.396 
Kittiwake Cape Krutik 1 31 595 3452 0 1 3946 29326 0.191 0.246 
Kittiwake Cape Krutik 2 31 1517 2131 0 1 3538 29345 0.278 0.297 
Kittiwake Cape Krutik 3 31 3906 0 0 1 3763 29227 0.692 0.695 
Kittiwake Cape Krutik 4 31 2092 1566 0 1 3444 29227 0.880 0.884 
Kittiwake Cape Krutik 5 29 1247 116 0 1 1262 29235 0.843 0.870 
Kittiwake Cape Krutik 6 17 1080 0 0 1 1002 19521 0.893 0.909 
Kittiwake Cape Krutik 7 17 1116 0 0 1 1032 19422 0.910 0.927 
Kittiwake Cape Krutik 8 29 1362 793 0 1 2092 29102 0.688 0.760 
Kittiwake Cape Krutik 9 33 3162 431 0 1 3515 29147 0.626 0.669 
Kittiwake Cape Krutik 10 33 2609 1321 0 1 3768 29096 0.272 0.327 
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Kittiwake Cape Krutik 11 33 243 3787 0 1 4004 29246 0.328 0.368 
Kittiwake Cape Krutik 12 31 363 3670 0 1 3976 29237 0.308 0.369 
Kittiwake Cape Sakhanin 1 5 42 269 0 1 296 19482 0.251 0.456 
Kittiwake Cape Sakhanin 2 5 115 167 0 1 264 19516 0.165 0.411 
Kittiwake Cape Sakhanin 3 5 310 0 0 1 286 19519 0.185 0.452 
Kittiwake Cape Sakhanin 4 5 75 212 0 1 266 19513 0.473 0.681 
Kittiwake Cape Sakhanin 5 1 1 1 0 NA NA NA NA NA 
Kittiwake Cape Sakhanin 6 0 0 0 0 NA NA NA NA NA 
Kittiwake Cape Sakhanin 7 0 0 0 0 NA NA NA NA NA 
Kittiwake Cape Sakhanin 8 5 105 90 0 1 186 19380 0.578 0.749 
Kittiwake Cape Sakhanin 9 5 272 28 0 1 295 19411 0.339 0.591 
Kittiwake Cape Sakhanin 10 5 224 86 0 1 291 19428 0.384 0.621 
Kittiwake Cape Sakhanin 11 5 98 202 0 1 283 19476 0.317 0.518 
Kittiwake Cape Sakhanin 12 5 136 174 0 1 300 19512 0.198 0.448 
Kittiwake Faroe Islands 1 21 43 2685 0 1 2716 29238 0.144 0.247 
Kittiwake Faroe Islands 2 21 961 1535 0 1 2474 29265 0.237 0.353 
Kittiwake Faroe Islands 3 21 2728 0 0 1 2684 29310 0.603 0.653 
Kittiwake Faroe Islands 4 21 358 2283 0 1 2622 29242 0.659 0.716 
Kittiwake Faroe Islands 5 21 664 2039 0 1 2676 29253 0.726 0.767 
Kittiwake Faroe Islands 6 21 1478 414 0 1 1869 29182 0.856 0.879 
Kittiwake Faroe Islands 7 21 432 1744 0 1 2157 29195 0.807 0.827 
Kittiwake Faroe Islands 8 21 729 1999 0 1 2564 29111 0.330 0.430 
Kittiwake Faroe Islands 9 21 2199 441 0 1 2403 29104 0.301 0.414 
Kittiwake Faroe Islands 10 21 1848 881 0 2 2616 29150 0.383 0.475 
Kittiwake Faroe Islands 11 21 74 2566 0 1 2634 29238 0.417 0.518 
Kittiwake Faroe Islands 12 21 17 2711 0 1 2723 29257 0.334 0.448 
Kittiwake Franz Josef Land 1 54 175 4911 0 1 4868 39037 0.173 0.228 
Kittiwake Franz Josef Land 2 54 1697 2946 0 1 4494 38995 0.153 0.209 
Kittiwake Franz Josef Land 3 54 5084 0 0 1 4957 39004 0.136 0.186 
Kittiwake Franz Josef Land 4 54 1104 2099 0 1 3048 38987 0.109 0.205 
Kittiwake Franz Josef Land 5 7 68 53 1 1 778 38972 0.067 0.249 
Kittiwake Franz Josef Land 6 1 60 0 1 4 47 9747 0.921 0.940 
Kittiwake Franz Josef Land 7 1 62 0 1 4 117 9744 0.871 0.919 
Kittiwake Franz Josef Land 8 1 62 0 1 3 668 38858 0.705 0.800 
Kittiwake Franz Josef Land 9 26 1410 83 0 1 1424 38794 0.606 0.721 
Kittiwake Franz Josef Land 10 54 1427 1582 0 1 2934 38849 0.332 0.412 
Kittiwake Franz Josef Land 11 54 641 4277 0 1 4887 38976 0.245 0.300 
Kittiwake Franz Josef Land 12 54 112 4972 0 1 5055 39066 0.305 0.370 
Kittiwake Hornøya 1 49 379 3671 0 1 3954 39050 0.179 0.262 
Kittiwake Hornøya 2 49 1635 2062 0 1 3581 39028 0.315 0.364 
Kittiwake Hornøya 3 49 4030 0 0 1 3760 39021 0.698 0.718 
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Kittiwake Hornøya 4 49 1853 1855 0 1 3445 39023 0.905 0.908 
Kittiwake Hornøya 5 25 245 63 0 1 286 39042 0.658 0.791 
Kittiwake Hornøya 6 3 180 0 0 4 170 9715 0.874 0.912 
Kittiwake Hornøya 7 3 186 0 0 4 170 9719 0.927 0.940 
Kittiwake Hornøya 8 28 301 219 0 1 505 29130 0.320 0.550 
Kittiwake Hornøya 9 42 2775 361 0 1 3072 38852 0.621 0.675 
Kittiwake Hornøya 10 49 2392 1238 0 1 3510 38844 0.236 0.318 
Kittiwake Hornøya 11 49 210 3689 0 1 3875 38927 0.350 0.428 
Kittiwake Hornøya 12 49 146 3883 0 1 4003 39029 0.273 0.371 
Kittiwake Isfjorden 1 29 73 3213 0 1 3168 29316 0.168 0.242 
Kittiwake Isfjorden 2 29 1090 1901 0 1 2899 29276 0.156 0.216 
Kittiwake Isfjorden 3 29 3224 0 0 1 3085 29257 0.123 0.201 
Kittiwake Isfjorden 4 29 1082 1206 0 1 2087 29293 0.200 0.303 
Kittiwake Isfjorden 5 12 284 61 0 1 273 29231 0.599 0.677 
Kittiwake Isfjorden 6 4 240 0 0 4 177 9759 0.973 0.977 
Kittiwake Isfjorden 7 4 248 0 0 4 191 9736 0.952 0.958 
Kittiwake Isfjorden 8 19 283 92 0 1 313 29065 0.546 0.719 
Kittiwake Isfjorden 9 29 2713 353 0 1 2931 29099 0.574 0.637 
Kittiwake Isfjorden 10 29 2282 998 0 1 3138 29144 0.350 0.424 
Kittiwake Isfjorden 11 29 350 2824 0 1 3095 29205 0.218 0.284 
Kittiwake Isfjorden 12 29 36 3250 0 1 3192 29225 0.292 0.369 
Kittiwake Isle of May 1 35 225 3183 0 1 3365 29298 0.208 0.284 
Kittiwake Isle of May 2 35 1272 1839 0 1 3055 29311 0.130 0.216 
Kittiwake Isle of May 3 35 3410 0 0 1 3266 29292 0.364 0.428 
Kittiwake Isle of May 4 35 1093 2220 0 1 3106 29239 0.803 0.820 
Kittiwake Isle of May 5 35 1740 1624 0 1 2970 29254 0.901 0.908 
Kittiwake Isle of May 6 34 1536 794 0 1 2046 38911 0.881 0.903 
Kittiwake Isle of May 7 35 1775 1542 0 1 2877 29170 0.920 0.924 
Kittiwake Isle of May 8 35 1594 1819 0 1 3082 29128 0.697 0.689 
Kittiwake Isle of May 9 35 2867 436 0 1 3018 29123 0.345 0.406 
Kittiwake Isle of May 10 35 2359 1063 0 1 3204 29117 0.204 0.279 
Kittiwake Isle of May 11 35 275 3022 0 1 3257 29200 0.280 0.346 
Kittiwake Isle of May 12 35 236 3174 0 1 3363 29260 0.315 0.390 
Kittiwake Kongsfjorden 1 34 37 3125 0 1 3114 48800 0.176 0.280 
Kittiwake Kongsfjorden 2 34 1007 1865 0 1 2852 48780 0.101 0.197 
Kittiwake Kongsfjorden 3 33 3100 0 0 1 3053 48772 0.126 0.226 
Kittiwake Kongsfjorden 4 33 1166 938 0 1 2032 48780 0.209 0.307 
Kittiwake Kongsfjorden 5 7 17 29 1 3 680 48737 0.177 0.377 
Kittiwake Kongsfjorden 6 0 0 0 0 NA NA NA NA NA 
Kittiwake Kongsfjorden 7 0 0 0 0 NA NA NA NA NA 
Kittiwake Kongsfjorden 8 8 14 15 1 3 792 48475 0.357 0.603 
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Kittiwake Kongsfjorden 9 24 1611 164 0 1 1695 48506 0.449 0.597 
Kittiwake Kongsfjorden 10 34 1501 906 0 1 2312 48594 0.190 0.325 
Kittiwake Kongsfjorden 11 34 229 2831 0 1 3050 48664 0.268 0.369 
Kittiwake Kongsfjorden 12 34 23 3139 0 1 3153 48732 0.288 0.410 

Kittiwake 
Langanes and 
Skjalfandi 1 26 72 2284 0 1 2336 29344 0.220 0.352 

Kittiwake 
Langanes and 
Skjalfandi 2 26 841 1319 0 1 2083 29340 0.244 0.380 

Kittiwake 
Langanes and 
Skjalfandi 3 26 2356 0 0 1 2227 29256 0.579 0.637 

Kittiwake 
Langanes and 
Skjalfandi 4 26 547 1733 0 1 2210 29240 0.746 0.789 

Kittiwake 
Langanes and 
Skjalfandi 5 26 695 774 0 1 1397 29267 0.765 0.819 

Kittiwake 
Langanes and 
Skjalfandi 6 12 720 0 0 1 672 19456 0.945 0.954 

Kittiwake 
Langanes and 
Skjalfandi 7 21 772 86 0 1 787 29121 0.902 0.930 

Kittiwake 
Langanes and 
Skjalfandi 8 27 742 1542 0 1 2187 29128 0.657 0.711 

Kittiwake 
Langanes and 
Skjalfandi 9 27 1962 378 0 1 2241 29121 0.402 0.487 

Kittiwake 
Langanes and 
Skjalfandi 10 27 1641 780 0 1 2351 29170 0.322 0.434 

Kittiwake 
Langanes and 
Skjalfandi 11 27 102 2238 0 1 2326 29216 0.305 0.418 

Kittiwake 
Langanes and 
Skjalfandi 12 27 36 2355 0 1 2388 29269 0.326 0.451 

Kittiwake Røst 1 43 1160 5078 0 1 6035 39048 0.386 0.387 
Kittiwake Røst 2 43 2559 2890 0 1 5326 39028 0.758 0.724 
Kittiwake Røst 3 42 5642 0 0 1 5532 39005 0.859 0.850 
Kittiwake Røst 4 42 1642 3740 0 1 5294 38966 0.902 0.897 
Kittiwake Røst 5 42 2582 848 0 1 3390 38958 0.880 0.882 
Kittiwake Røst 6 30 2700 0 0 4 2675 29215 0.919 0.907 
Kittiwake Røst 7 33 2853 72 0 1 2894 38870 0.943 0.942 
Kittiwake Røst 8 42 2634 2294 0 1 4843 38777 0.647 0.664 
Kittiwake Røst 9 43 5132 865 0 1 5809 38830 0.414 0.450 
Kittiwake Røst 10 43 4169 2173 0 1 6078 38852 0.248 0.304 
Kittiwake Røst 11 43 272 5936 0 1 6122 38971 0.448 0.470 
Kittiwake Røst 12 43 438 5941 0 1 6260 39021 0.337 0.377 
Kittiwake Runde and Ålesund 1 25 189 1801 0 1 1948 19499 0.184 0.278 
Kittiwake Runde and Ålesund 2 25 835 924 0 1 1675 19519 0.366 0.413 
Kittiwake Runde and Ålesund 3 24 1860 0 0 3 1736 19529 0.582 0.637 
Kittiwake Runde and Ålesund 4 24 433 1379 0 1 1734 19529 0.791 0.815 
Kittiwake Runde and Ålesund 5 24 642 1122 0 1 1649 19481 0.868 0.879 
Kittiwake Runde and Ålesund 6 17 1100 47 0 1 994 29197 0.935 0.948 
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Kittiwake Runde and Ålesund 7 25 1116 776 0 1 1710 29144 0.905 0.918 
Kittiwake Runde and Ålesund 8 25 815 1173 0 1 1858 29109 0.654 0.692 
Kittiwake Runde and Ålesund 9 25 1646 274 0 1 1801 19423 0.352 0.425 
Kittiwake Runde and Ålesund 10 25 1339 642 0 1 1911 19449 0.255 0.341 
Kittiwake Runde and Ålesund 11 25 126 1791 0 1 1899 19460 0.408 0.483 
Kittiwake Runde and Ålesund 12 25 140 1845 0 1 1956 19463 0.355 0.451 
Kittiwake Sklinna 1 36 627 3458 0 1 3989 29287 0.260 0.301 
Kittiwake Sklinna 2 36 1930 1758 0 1 3532 29271 0.619 0.599 
Kittiwake Sklinna 3 36 3968 0 0 1 3723 29220 0.909 0.899 
Kittiwake Sklinna 4 36 1823 2021 0 1 3648 29229 0.904 0.904 
Kittiwake Sklinna 5 36 1614 1603 0 1 3039 29316 0.897 0.903 
Kittiwake Sklinna 6 20 1679 1 0 1 1569 19453 0.960 0.961 
Kittiwake Sklinna 7 34 2067 677 0 1 2553 29184 0.931 0.932 
Kittiwake Sklinna 8 35 1822 2148 0 1 3827 29078 0.754 0.758 
Kittiwake Sklinna 9 36 3431 514 0 1 3796 29104 0.479 0.525 
Kittiwake Sklinna 10 36 2943 1147 0 1 3910 29127 0.361 0.394 
Kittiwake Sklinna 11 36 369 3576 0 1 3888 29175 0.354 0.410 
Kittiwake Sklinna 12 36 205 3887 0 1 4066 29265 0.347 0.408 
C. guillemot Bjørnøya 1 35 1734 2668 0 1 4285 29887 0.697 0.727 
C. guillemot Bjørnøya 2 35 1435 2558 0 1 3935 29893 0.745 0.772 
C. guillemot Bjørnøya 3 35 4278 0 0 1 4273 29874 0.796 0.811 
C. guillemot Bjørnøya 4 35 1059 1501 0 1 2552 29863 0.733 0.780 
C. guillemot Bjørnøya 5 8 558 0 0 1 558 19919 0.668 0.778 
C. guillemot Bjørnøya 6 8 540 0 0 1 540 19890 0.691 0.791 
C. guillemot Bjørnøya 7 8 558 0 0 1 558 19893 0.738 0.820 
C. guillemot Bjørnøya 8 35 397 1765 0 1 2149 29846 0.622 0.709 
C. guillemot Bjørnøya 9 35 3560 760 0 3 4278 29831 0.709 0.737 
C. guillemot Bjørnøya 10 35 3590 874 0 1 4412 29847 0.740 0.761 
C. guillemot Bjørnøya 11 35 1018 3302 0 1 4196 29871 0.743 0.766 
C. guillemot Bjørnøya 12 35 2998 1425 0 1 4260 29857 0.759 0.774 
C. guillemot Cape Gorodetskiy 1 4 86 224 0 1 299 29881 0.474 0.710 
C. guillemot Cape Gorodetskiy 2 4 132 150 0 1 266 29896 0.331 0.630 
C. guillemot Cape Gorodetskiy 3 4 310 0 0 1 306 29872 0.524 0.742 
C. guillemot Cape Gorodetskiy 4 4 180 107 0 1 266 29852 0.684 0.823 
C. guillemot Cape Gorodetskiy 5 2 63 1 0 4 62 19893 0.444 0.749 
C. guillemot Cape Gorodetskiy 6 1 60 0 0 4 56 9962 0.591 0.800 
C. guillemot Cape Gorodetskiy 7 1 62 0 0 4 61 9950 0.318 0.645 
C. guillemot Cape Gorodetskiy 8 4 49 145 0 1 194 29855 0.272 0.622 
C. guillemot Cape Gorodetskiy 9 4 266 34 0 1 283 29841 0.382 0.670 
C. guillemot Cape Gorodetskiy 10 4 245 65 0 3 308 29834 0.232 0.569 
C. guillemot Cape Gorodetskiy 11 4 89 211 0 1 290 29865 0.484 0.723 



NINA Report 1657 
 

76 

Species Colony name M
on

th
 

N
in

d 

IR
M

Ap
os

 

G
LS

po
s 

A
dd

 

M
od

el
 

nP
re

s 

nB
ac

kv
al

 

R
sq

Ad
j 

D
ev

Ex
pl

 

C. guillemot Cape Gorodetskiy 12 4 161 149 0 1 295 29845 0.591 0.783 
C. guillemot Faroe Islands 1 7 23 471 0 3 493 19925 0.113 0.282 
C. guillemot Faroe Islands 2 7 165 294 0 3 458 19919 0.079 0.273 
C. guillemot Faroe Islands 3 7 496 0 0 3 496 19922 0.322 0.564 
C. guillemot Faroe Islands 4 7 140 340 0 3 471 19887 0.315 0.550 
C. guillemot Faroe Islands 5 7 139 298 0 3 436 19910 0.367 0.600 
C. guillemot Faroe Islands 6 3 72 32 0 4 103 9942 0.443 0.678 
C. guillemot Faroe Islands 7 7 88 166 0 4 254 19900 0.385 0.628 
C. guillemot Faroe Islands 8 7 39 459 0 3 497 19900 0.318 0.536 
C. guillemot Faroe Islands 9 7 395 85 0 3 476 19905 0.147 0.400 
C. guillemot Faroe Islands 10 7 390 106 0 3 491 19898 0.175 0.388 
C. guillemot Faroe Islands 11 7 12 468 0 3 479 19889 0.113 0.317 
C. guillemot Faroe Islands 12 7 16 481 0 3 497 19894 0.111 0.305 
C. guillemot Grimsey 1 9 93 588 0 1 673 19912 0.476 0.619 
C. guillemot Grimsey 2 9 279 355 0 1 614 19912 0.496 0.649 
C. guillemot Grimsey 3 9 682 0 0 1 660 19920 0.613 0.740 
C. guillemot Grimsey 4 9 299 361 0 1 605 19903 0.638 0.747 
C. guillemot Grimsey 5 9 186 166 0 1 326 19880 0.685 0.811 
C. guillemot Grimsey 6 2 120 0 0 1 118 9949 0.838 0.903 
C. guillemot Grimsey 7 8 171 29 0 1 182 19893 0.420 0.673 
C. guillemot Grimsey 8 9 198 482 0 1 623 19895 0.583 0.710 
C. guillemot Grimsey 9 9 569 91 0 1 619 19897 0.564 0.705 
C. guillemot Grimsey 10 9 548 135 0 1 656 19909 0.377 0.569 
C. guillemot Grimsey 11 9 58 603 0 1 647 19912 0.372 0.563 
C. guillemot Grimsey 12 9 61 620 0 1 671 19901 0.391 0.575 
C. guillemot Hjelmsøya 1 28 1070 1392 0 1 2332 49781 0.602 0.717 
C. guillemot Hjelmsøya 2 26 907 1220 0 1 1997 49835 0.718 0.799 
C. guillemot Hjelmsøya 3 26 2294 0 0 1 2178 49788 0.781 0.836 
C. guillemot Hjelmsøya 4 26 691 1094 0 1 1697 49765 0.717 0.805 
C. guillemot Hjelmsøya 5 8 679 3 0 1 658 29850 0.640 0.774 
C. guillemot Hjelmsøya 6 8 660 0 0 1 599 29858 0.766 0.850 
C. guillemot Hjelmsøya 7 8 682 0 0 1 597 29827 0.748 0.840 
C. guillemot Hjelmsøya 8 28 543 1099 0 1 1571 39772 0.569 0.709 
C. guillemot Hjelmsøya 9 28 2034 374 0 1 2332 39816 0.685 0.761 
C. guillemot Hjelmsøya 10 28 2002 478 0 1 2382 39778 0.650 0.739 
C. guillemot Hjelmsøya 11 28 662 1738 0 1 2217 39794 0.642 0.733 
C. guillemot Hjelmsøya 12 28 1998 482 0 1 2272 39807 0.629 0.726 
C. guillemot Hornøya 1 37 1281 3307 0 1 4371 29879 0.770 0.783 
C. guillemot Hornøya 2 37 1786 2399 0 1 4040 29891 0.845 0.851 
C. guillemot Hornøya 3 37 4526 0 0 1 4327 29884 0.924 0.916 
C. guillemot Hornøya 4 37 1694 2355 0 1 3833 29842 0.925 0.922 
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C. guillemot Hornøya 5 26 2232 0 0 1 2103 19888 0.917 0.919 
C. guillemot Hornøya 6 26 2160 0 0 1 2020 19891 0.925 0.922 
C. guillemot Hornøya 7 26 2232 0 0 1 2078 19894 0.888 0.896 
C. guillemot Hornøya 8 37 1289 2276 0 1 3541 29838 0.753 0.781 
C. guillemot Hornøya 9 37 3705 795 0 1 4467 29821 0.722 0.747 
C. guillemot Hornøya 10 37 3703 947 0 1 4578 29827 0.702 0.731 
C. guillemot Hornøya 11 37 779 3664 0 1 4265 29859 0.735 0.750 
C. guillemot Hornøya 12 37 2031 2557 0 1 4372 29834 0.786 0.796 
C. guillemot Isle of May 1 30 1243 2332 0 1 3276 29870 0.630 0.689 
C. guillemot Isle of May 2 30 1894 1392 0 1 2972 29901 0.628 0.693 
C. guillemot Isle of May 3 30 3596 0 0 1 3207 29877 0.739 0.772 
C. guillemot Isle of May 4 30 1871 1615 0 1 3160 29858 0.802 0.817 
C. guillemot Isle of May 5 30 2291 1310 0 1 3033 29851 0.892 0.897 
C. guillemot Isle of May 6 32 2003 1215 0 1 2777 39790 0.848 0.867 
C. guillemot Isle of May 7 32 1314 2452 0 1 3528 29834 0.760 0.762 
C. guillemot Isle of May 8 32 944 2783 0 1 3553 29852 0.696 0.723 
C. guillemot Isle of May 9 31 3011 482 0 1 3314 29842 0.624 0.681 
C. guillemot Isle of May 10 30 3129 491 0 1 3280 29847 0.580 0.635 
C. guillemot Isle of May 11 30 1306 2169 0 1 3077 29824 0.612 0.670 
C. guillemot Isle of May 12 30 1239 2334 0 1 3275 29844 0.682 0.726 
C. guillemot Jan Mayen 1 27 332 2147 0 1 2415 39818 0.271 0.409 
C. guillemot Jan Mayen 2 27 847 1411 0 1 2195 39846 0.296 0.419 
C. guillemot Jan Mayen 3 27 2480 0 0 1 2461 39838 0.309 0.449 
C. guillemot Jan Mayen 4 27 674 1537 0 1 2196 39787 0.657 0.716 
C. guillemot Jan Mayen 5 11 691 16 0 1 703 19906 0.805 0.855 
C. guillemot Jan Mayen 6 8 660 0 0 1 650 19897 0.840 0.882 
C. guillemot Jan Mayen 7 8 680 2 0 1 677 19882 0.590 0.694 
C. guillemot Jan Mayen 8 27 418 1453 0 1 1853 39791 0.321 0.477 
C. guillemot Jan Mayen 9 27 2003 397 0 1 2365 39752 0.313 0.465 
C. guillemot Jan Mayen 10 27 1959 522 0 1 2415 39776 0.290 0.429 
C. guillemot Jan Mayen 11 27 225 2174 0 1 2350 39794 0.209 0.346 
C. guillemot Jan Mayen 12 27 646 1832 0 1 2414 39787 0.233 0.370 

C. guillemot 
Langanes and 
Skjalfandi 1 27 346 2008 0 1 2285 29851 0.607 0.663 

C. guillemot 
Langanes and 
Skjalfandi 2 27 968 1180 0 1 2076 29898 0.719 0.766 

C. guillemot 
Langanes and 
Skjalfandi 3 27 2356 0 0 1 2322 29872 0.758 0.797 

C. guillemot 
Langanes and 
Skjalfandi 4 27 942 1338 0 1 2185 29861 0.758 0.799 

C. guillemot 
Langanes and 
Skjalfandi 5 27 789 497 0 1 1177 29851 0.745 0.810 
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C. guillemot 
Langanes and 
Skjalfandi 6 7 540 0 0 1 473 19891 0.884 0.917 

C. guillemot 
Langanes and 
Skjalfandi 7 8 557 12 0 1 518 29836 0.648 0.779 

C. guillemot 
Langanes and 
Skjalfandi 8 27 297 1852 0 1 2121 29828 0.648 0.715 

C. guillemot 
Langanes and 
Skjalfandi 9 27 1922 358 0 1 2127 29838 0.581 0.674 

C. guillemot 
Langanes and 
Skjalfandi 10 27 1887 469 0 1 2260 29815 0.416 0.555 

C. guillemot 
Langanes and 
Skjalfandi 11 27 238 2046 0 1 2219 29850 0.367 0.495 

C. guillemot 
Langanes and 
Skjalfandi 12 27 218 2136 0 1 2294 29851 0.473 0.562 

C. guillemot Sklinna 1 37 994 2536 0 1 3337 39824 0.559 0.631 
C. guillemot Sklinna 2 37 1394 1796 0 1 3047 39846 0.479 0.591 
C. guillemot Sklinna 3 37 3472 0 0 1 3052 39826 0.617 0.689 
C. guillemot Sklinna 4 37 1319 2002 0 1 3120 39826 0.807 0.836 
C. guillemot Sklinna 5 37 1146 987 0 1 2057 39806 0.778 0.827 
C. guillemot Sklinna 6 14 1080 0 0 1 1040 29856 0.699 0.789 
C. guillemot Sklinna 7 26 1179 104 0 1 1218 29852 0.655 0.749 
C. guillemot Sklinna 8 38 1278 1570 0 3 2694 39806 0.546 0.658 
C. guillemot Sklinna 9 38 3000 480 0 3 3407 39789 0.570 0.658 
C. guillemot Sklinna 10 38 2908 689 0 3 3511 39782 0.457 0.568 
C. guillemot Sklinna 11 38 620 2827 0 3 3312 39791 0.433 0.538 
C. guillemot Sklinna 12 37 1077 2457 0 3 3364 39798 0.476 0.564 
B. guillemot Alkefjellet 1 23 1705 218 0 1 1911 19942 0.533 0.624 
B. guillemot Alkefjellet 2 23 119 1088 0 1 1199 19931 0.594 0.693 
B. guillemot Alkefjellet 3 0 0 0 1 1 262 19932 0.393 0.647 
B. guillemot Alkefjellet 4 0 0 0 0 NA NA NA NA NA 
B. guillemot Alkefjellet 5 0 0 0 0 NA NA NA NA NA 
B. guillemot Alkefjellet 6 0 0 0 0 NA NA NA NA NA 
B. guillemot Alkefjellet 7 0 0 0 0 NA NA NA NA NA 
B. guillemot Alkefjellet 8 5 3 6 1 3 384 19791 0.379 0.611 
B. guillemot Alkefjellet 9 13 723 72 0 1 793 19843 0.587 0.712 
B. guillemot Alkefjellet 10 23 753 349 0 1 1075 19834 0.528 0.662 
B. guillemot Alkefjellet 11 23 1558 302 0 1 1830 19864 0.565 0.656 
B. guillemot Alkefjellet 12 23 1922 0 0 1 1904 19916 0.504 0.606 
B. guillemot Bjørnøya 1 29 487 2507 0 1 2950 29900 0.467 0.541 
B. guillemot Bjørnøya 2 29 913 1750 0 1 2547 29896 0.487 0.558 
B. guillemot Bjørnøya 3 28 2728 0 0 2 2700 29907 0.748 0.786 
B. guillemot Bjørnøya 4 28 581 900 0 1 1465 29876 0.755 0.814 
B. guillemot Bjørnøya 5 1 62 0 0 4 62 9947 0.673 0.830 
B. guillemot Bjørnøya 6 1 60 0 0 4 60 9942 0.664 0.832 
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B. guillemot Bjørnøya 7 1 62 0 0 4 62 9939 0.310 0.598 
B. guillemot Bjørnøya 8 29 141 842 0 1 972 29726 0.550 0.706 
B. guillemot Bjørnøya 9 29 2578 493 0 1 3043 29759 0.684 0.738 
B. guillemot Bjørnøya 10 29 2522 628 0 1 3109 29719 0.581 0.635 
B. guillemot Bjørnøya 11 29 594 2325 0 1 2767 29833 0.417 0.527 
B. guillemot Bjørnøya 12 29 498 2474 0 2 2822 29858 0.610 0.678 
B. guillemot Cape Gorodetskiy 1 16 436 1275 0 1 1697 29890 0.568 0.676 
B. guillemot Cape Gorodetskiy 2 16 553 958 0 1 1483 29912 0.408 0.567 
B. guillemot Cape Gorodetskiy 3 16 1612 0 0 1 1588 29914 0.597 0.700 
B. guillemot Cape Gorodetskiy 4 16 881 544 0 1 1360 29878 0.841 0.878 
B. guillemot Cape Gorodetskiy 5 9 565 11 0 1 551 29878 0.677 0.786 
B. guillemot Cape Gorodetskiy 6 8 540 0 0 1 510 19862 0.736 0.816 
B. guillemot Cape Gorodetskiy 7 8 558 0 0 1 525 19838 0.735 0.826 
B. guillemot Cape Gorodetskiy 8 16 461 657 0 1 1098 29727 0.524 0.689 
B. guillemot Cape Gorodetskiy 9 16 1447 228 0 1 1661 29736 0.533 0.669 
B. guillemot Cape Gorodetskiy 10 16 1353 382 0 1 1728 29754 0.533 0.653 
B. guillemot Cape Gorodetskiy 11 16 167 1510 0 1 1672 29842 0.577 0.673 
B. guillemot Cape Gorodetskiy 12 16 697 1038 0 1 1709 29843 0.638 0.730 
B. guillemot Cape Sakhanin 1 41 627 2845 0 1 3199 19949 0.829 0.831 
B. guillemot Cape Sakhanin 2 41 1050 2103 0 1 3127 19932 0.747 0.765 
B. guillemot Cape Sakhanin 3 40 3286 0 0 1 3259 19931 0.698 0.724 
B. guillemot Cape Sakhanin 4 40 1161 1737 0 1 2544 19916 0.704 0.738 
B. guillemot Cape Sakhanin 5 14 755 9 0 4 718 19929 0.874 0.904 
B. guillemot Cape Sakhanin 6 12 720 0 0 4 678 9937 0.950 0.949 
B. guillemot Cape Sakhanin 7 12 744 0 0 4 700 9917 0.949 0.948 
B. guillemot Cape Sakhanin 8 41 949 1301 0 1 2158 19812 0.792 0.813 
B. guillemot Cape Sakhanin 9 41 2923 437 0 1 3271 19832 0.806 0.809 
B. guillemot Cape Sakhanin 10 41 2777 695 0 1 3380 19839 0.806 0.810 
B. guillemot Cape Sakhanin 11 41 592 2768 0 1 3220 19859 0.820 0.826 
B. guillemot Cape Sakhanin 12 41 1799 1673 0 1 3300 19903 0.869 0.866 
B. guillemot Franz J/Oranskie 1 10 445 177 0 1 620 19933 0.437 0.633 
B. guillemot Franz J/Oranskie 2 10 175 368 0 1 527 19944 0.437 0.646 
B. guillemot Franz J/Oranskie 3 9 558 0 0 3 518 19940 0.397 0.607 
B. guillemot Franz J/Oranskie 4 9 97 67 1 3 363 19914 0.245 0.535 
B. guillemot Franz J/Oranskie 5 0 0 0 0 NA NA NA NA NA 
B. guillemot Franz J/Oranskie 6 0 0 0 0 NA NA NA NA NA 
B. guillemot Franz J/Oranskie 7 0 0 0 0 NA NA NA NA NA 
B. guillemot Franz J/Oranskie 8 2 4 14 1 3 168 9916 0.228 0.525 
B. guillemot Franz J/Oranskie 9 6 296 34 0 1 329 9920 0.422 0.624 
B. guillemot Franz J/Oranskie 10 11 313 128 0 1 410 29764 0.394 0.650 
B. guillemot Franz J/Oranskie 11 11 506 104 0 1 588 29816 0.467 0.663 
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B. guillemot Franz J/Oranskie 12 10 620 0 0 1 614 19910 0.435 0.634 
B. guillemot Grimsey 1 12 310 868 0 1 1095 19924 0.519 0.627 
B. guillemot Grimsey 2 12 548 534 0 1 1015 19935 0.546 0.628 
B. guillemot Grimsey 3 12 1178 0 0 1 1133 19930 0.717 0.759 
B. guillemot Grimsey 4 12 489 651 0 1 1046 19936 0.797 0.834 
B. guillemot Grimsey 5 12 449 327 0 1 723 19926 0.862 0.891 
B. guillemot Grimsey 6 7 420 0 0 4 406 9936 0.934 0.936 
B. guillemot Grimsey 7 10 422 23 0 1 428 19842 0.749 0.789 
B. guillemot Grimsey 8 12 245 835 0 1 1056 19836 0.429 0.554 
B. guillemot Grimsey 9 12 958 182 0 3 1061 19841 0.295 0.456 
B. guillemot Grimsey 10 12 968 210 0 1 1093 19834 0.399 0.551 
B. guillemot Grimsey 11 12 101 1039 0 2 1103 19884 0.448 0.589 
B. guillemot Grimsey 12 12 103 1075 0 1 1153 19917 0.408 0.530 
B. guillemot Hornøya 1 46 1843 3491 0 1 5238 39834 0.583 0.611 
B. guillemot Hornøya 2 46 1899 2974 0 1 4725 39871 0.626 0.654 
B. guillemot Hornøya 3 46 5332 0 0 1 5128 39854 0.818 0.806 
B. guillemot Hornøya 4 46 2486 2329 0 1 4500 39854 0.909 0.904 
B. guillemot Hornøya 5 23 2476 4 0 1 2301 29885 0.896 0.909 
B. guillemot Hornøya 6 23 2400 0 0 4 2249 29832 0.857 0.876 
B. guillemot Hornøya 7 23 2480 0 0 1 2341 29708 0.902 0.911 
B. guillemot Hornøya 8 45 1703 2199 0 1 3870 49498 0.652 0.726 
B. guillemot Hornøya 9 45 4329 853 0 1 5158 39622 0.693 0.732 
B. guillemot Hornøya 10 46 4191 1152 0 1 5306 39637 0.655 0.680 
B. guillemot Hornøya 11 46 982 4235 0 1 5196 39771 0.613 0.636 
B. guillemot Hornøya 12 46 3459 1875 0 1 5243 39828 0.564 0.592 
B. guillemot Isfjorden 1 17 187 991 0 1 1069 39850 0.367 0.576 
B. guillemot Isfjorden 2 17 382 589 0 1 791 39888 0.380 0.604 
B. guillemot Isfjorden 3 12 806 0 0 1 746 29899 0.482 0.616 
B. guillemot Isfjorden 4 12 149 33 1 3 478 29883 0.179 0.455 
B. guillemot Isfjorden 5 0 0 0 0 NA NA NA NA NA 
B. guillemot Isfjorden 6 0 0 0 0 NA NA NA NA NA 
B. guillemot Isfjorden 7 0 0 0 0 NA NA NA NA NA 
B. guillemot Isfjorden 8 14 25 193 1 3 799 39660 0.237 0.505 
B. guillemot Isfjorden 9 18 981 202 0 3 1165 39634 0.212 0.443 
B. guillemot Isfjorden 10 18 1033 212 0 1 1120 39657 0.204 0.379 
B. guillemot Isfjorden 11 18 346 841 0 1 1130 39756 0.251 0.448 
B. guillemot Isfjorden 12 17 124 1054 0 2 1100 39806 0.374 0.589 
B. guillemot Jan Mayen 1 42 1070 4200 0 1 4815 29893 0.626 0.646 
B. guillemot Jan Mayen 2 42 2010 2712 0 2 4133 29903 0.542 0.593 
B. guillemot Jan Mayen 3 42 5084 0 0 1 4941 29898 0.688 0.697 
B. guillemot Jan Mayen 4 42 1421 3158 0 1 4535 29877 0.869 0.866 
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B. guillemot Jan Mayen 5 28 2422 7 0 4 2410 29885 0.783 0.808 
B. guillemot Jan Mayen 6 27 2340 0 0 1 2318 19861 0.885 0.888 
B. guillemot Jan Mayen 7 27 2418 0 0 1 2391 19825 0.875 0.883 
B. guillemot Jan Mayen 8 42 1414 2503 0 2 3888 29733 0.750 0.774 
B. guillemot Jan Mayen 9 42 4353 877 0 2 4967 29762 0.728 0.738 
B. guillemot Jan Mayen 10 42 4318 1084 0 1 4848 29735 0.496 0.536 
B. guillemot Jan Mayen 11 42 601 4619 0 2 5048 29832 0.594 0.616 
B. guillemot Jan Mayen 12 42 602 4720 0 2 5047 29859 0.627 0.647 

B. guillemot 
Langanes and 
Skjalfandi 1 17 338 1175 0 1 1411 29920 0.523 0.642 

B. guillemot 
Langanes and 
Skjalfandi 2 17 633 721 0 1 1226 29897 0.476 0.626 

B. guillemot 
Langanes and 
Skjalfandi 3 17 1488 0 0 1 1452 29907 0.638 0.719 

B. guillemot 
Langanes and 
Skjalfandi 4 17 545 895 0 1 1396 29891 0.770 0.824 

B. guillemot 
Langanes and 
Skjalfandi 5 17 523 313 0 1 773 29876 0.765 0.836 

B. guillemot 
Langanes and 
Skjalfandi 6 6 420 0 0 1 373 19866 0.916 0.937 

B. guillemot 
Langanes and 
Skjalfandi 7 7 436 16 0 1 431 29761 0.638 0.766 

B. guillemot 
Langanes and 
Skjalfandi 8 17 401 747 0 2 1125 29759 0.528 0.667 

B. guillemot 
Langanes and 
Skjalfandi 9 17 1286 215 0 1 1426 29734 0.501 0.593 

B. guillemot 
Langanes and 
Skjalfandi 10 17 1243 307 0 1 1479 29741 0.458 0.563 

B. guillemot 
Langanes and 
Skjalfandi 11 17 144 1356 0 1 1440 29838 0.418 0.567 

B. guillemot 
Langanes and 
Skjalfandi 12 17 156 1394 0 1 1474 29871 0.505 0.630 
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6.3 R-script - Procedures for reading SEATRACK output files 

 

SEATRACK - Models of pelagic seabird abundance 

Reading model output data from netCDF files using R Statistical Software 

For more information about the project, please visit SEATRACK’s website 

This page provides example R code to: 

• connect to a netCDF file 
• examine structure and read metadata information of the netCDF file 
• extract and map monthly abundance data for a specific colony 
• extract, aggregate, and map monthly abundance data for all colonies from a specific ocean area and 

country 

 

1) Preparing workspace and loading data 

# Loading necessary libraries 
  library(ncdf4); library(raster); library(maps); library(knitr) 
 
# Selecting one of the six species 
# c("Alle_alle", "Fratercula_arctica", "Fulmarus_glacialis", 
# "Rissa_tridactyla", "Uria_aalge", "Uria_lomvia") 
  sp <- "Uria_aalge"  
 
# Opening connection to netCDF file 
  nc <- nc_open(paste("outputs/SEATRACK_Abundance_Model_", sp, ".nc", sep = "")) 

 

2) Extracting metadata from the NetCDF file 

# Printing general information about the netCDF file, variables and dimensions 
  print(nc) 

## File outputs/SEATRACK_Abundance_Model_Uria_aalge.nc (NC_FORMAT_NETCDF4): 
##  
##      11 variables (excluding dimension variables): 
##         float PredictedAbundanceMean[lon,lat,month,colonyCode] (Chunking:[264,84,1,21]) (Compression: level 9) 
##             units: birds/pixel 
##             _FillValue: NaN 
##             long_name: Mean of the predicted abundance 
##         char colonyName[nchar,colonyCode]   (Contiguous storage)   
##             long_name: Name of the colony 
##         float colonyLatitude[colonyCode]   (Contiguous storage)   
##             units: dd.mmmmm 
##             long_name: Latitude of the colony 
##         float colonyLongitude[colonyCode]   (Contiguous storage)   
##             units: ddd.mmmmm 
##             long_name: Longitude of the colony 
##         char colonyOceanArea[nchar,colonyCode]   (Contiguous storage)   
##             long_name: Ocean area of the colony 
##         char colonyRegion[nchar,colonyCode]   (Contiguous storage)   
##             long_name: Region of the colony 
##         char colonyCountry[nchar,colonyCode]   (Contiguous storage)   
##             long_name: Country of the colony 
##         int colonyNpairs[colonyCode]   (Contiguous storage)   
##             units: number of breeding pairs 
##             long_name: Number of breeding pairs 
##         char SmcolCode[nchar,colonyCode]   (Contiguous storage)   
##             long_name: Code of the corresponding SEATRACK model colony 
##         char SmcolName[nchar,colonyCode]   (Contiguous storage)   
##             long_name: Name of the corresponding SEATRACK model colony 
##         float SmcolDistance[colonyCode]   (Contiguous storage)   
##             units: km 
##             long_name: Distance to the corresponding SEATRACK model colony 
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##  
##      5 dimensions: 
##         lon  Size:1580 
##             units: degrees east 
##             long_name: Longitude 
##         lat  Size:500 
##             units: degrees north 
##             long_name: Latitude 
##         month  Size:12 
##             long_name: Month of the year (integer) 
##         colonyCode  Size:126 
##             long_name: Colony identification code (integer) 
##         nchar  Size:50 
##  
##     7 global attributes: 
##         Dataset source: SEATRACK - distribution and abundance model outputs - Common guillemot (Uria aalge) 
##         Dataset version: v1.0 
##         Dataset last update: 2019-04-07 
##         Coordinate system (proj-string): '+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0' 
##         Created with: R version 3.4.4 (2018-03-15), package ncdf4 version 1.16 (2017-04-01) 
##         Authors: Per Fauchald & Arnaud Tarroux, Norwegian Institute for Nature Research 
##         Please cite:  
##   
##  Fauchald et al. (2019) Arctic-breeding seabird's hotspots in space and time - a methodological  
##  framework for year-round modelling of abundance and environmental niche using light-logger data.  
##  NINA report 1657, ISBN 978-82-426-3401-6. Norwegian Institute for Nature Research.  
##   
##   
##  For information about the SEATRACK project, please visit: http://www.seapop.no/en/seatrack/  
##  ___________________________________________________________________________________________________
______ 

 

3) Creating a table summarizing the metadata 

# Combining the metadata into a table 
  colonies <- cbind.data.frame(code        = ncvar_get(nc, "colonyCode"), 
                               name        = ncvar_get(nc, "colonyName"), 
                               lat         = ncvar_get(nc, "colonyLatitude"), 
                               lon         = ncvar_get(nc, "colonyLongitude"), 
                               oceanArea   = ncvar_get(nc, "colonyOceanArea"), 
                               region      = ncvar_get(nc, "colonyRegion"), 
                               country     = ncvar_get(nc, "colonyCountry"), 
                               nPairs      = ncvar_get(nc, "colonyNpairs"), 
                               modelColony = ncvar_get(nc, "SmcolName")) 
 
# Examining the first rows of the table 
  kable(head(colonies, 10)) 

 

code name lat lon oceanArea region country nPairs modelColony 
43 Runde 62.40 5.63 Norwegian_Sea More_og_Romsdal Norway 9000 Sklinna 

119 Kolvaeret 64.33 10.32 Norwegian_Sea Sor_Trondelag Norway 11 Sklinna 
136 Maaoya 65.22 10.96 Norwegian_Sea Nord_Trondelag Norway 750 Sklinna 
157 Buvaer-

Gjelfruvaer 
67.42 11.90 Norwegian_Sea Nordland Norway 30 Sklinna 

158 Hernyken 67.43 11.88 Norwegian_Sea Nordland Norway 50 Sklinna 
160 Trenyken og 

holmer 
omkring 

67.44 11.89 Norwegian_Sea Nordland Norway 300 Sklinna 

162 Ellefsnyken 67.45 11.91 Norwegian_Sea Nordland Norway 200 Sklinna 
164 Storfjellet 67.46 11.94 Norwegian_Sea Nordland Norway 500 Sklinna 
167 Vedoy 67.48 12.02 Norwegian_Sea Nordland Norway 670 Sklinna 
170 Knappen-

Buneset-
Maastadfjord 

67.64 12.59 Norwegian_Sea Nordland Norway 125 Sklinna 



NINA Report 1657 
 

84 

 

4) Producing maps for specific colony and month 

# Selecting a specific colony (based on its name) 
  selname <- "Dunglass to Fast Castle" 
  codecol <- ncvar_get(nc, "colonyCode")[ncvar_get(nc, "colonyName") == selname] 
  icol    <- which(ncvar_get(nc, "colonyCode") == codecol) 
 
# Selecting month (e.g. October) 
  iMth <- 10 
   
# Reading corresponding slice from the netCDF dataset 
  rast <- raster(nc$filename, varname="PredictedAbundanceMean", level = iMth, band = icol) 
 
# Producing a quick map 
  image(rast, tcl = .4, xlab = "longitude", ylab = "latitude", col = topo.colors(10000), 
     main=paste(month.name[as.numeric(ncvar_get(nc,"month")[iMth])], " - ", ncvar_get(nc,"c
olonyName")[icol], 
     " (", ncvar_get(nc, "colonyRegion")[icol], ") - colony #", ncvar_get(nc, "colonyCode")
[icol], sep = "")) 
  map("world", add = T, col = "white", fill = TRUE) 
# Adding colony location 
  points(colonies$lon[colonies$code == codecol], colonies$lat[colonies$code == codecol], 
         pch = 16, col = "red", cex = .8) 
  axis(1, tcl = .5); axis(2, tcl = .5); box() 

 

5) Aggregating data 

# Selecting grouping parameter value (e.g. all Norwegian colonies from Barents Sea and 
Norwegian Sea) 
  selarea <- c("Norwegian_Sea", "Barents_Sea") 
  selctry <- "Norway" 
 
  icols    <- which(ncvar_get(nc, "colonyOceanArea") == selarea & ncvar_get(nc, 
"colonyCountry") == selctry) 
  codecols <- unique(ncvar_get(nc, "colonyCode")[icols]) 
 
# selecting month (e.g. november) 
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  iMnth <- 11 
   
# Aggregating (here cumulative sum) the data for all selected colonies and month 
  sum.fun <- function(ii, jj) raster(nc$filename, varname="PredictedAbundanceMean", band = ii, 
level = jj) 
  rast.gr <- sum(stack(mapply(FUN = sum.fun, ii = icols, jj = iMth))) 
   
# Producing a quick map 
  image(rast.gr, tcl = .4, xlab = "longitude", ylab = "latitude", col = topo.colors(10000), 
     main=paste(month.name[as.numeric(ncvar_get(nc,"month")[iMnth])], "- aggregated data for ", 
       paste(paste(unique(selarea), collapse = " & "), " (", 
       paste(unique(selctry), collapse = " & "), ")", sep = ""))) 
  map("world", add = T, col = "white", fill = TRUE) 
# Adding colony locations 
  points(colonies$lon[colonies$code %in% codecols], colonies$lat[colonies$code %in% codecols], 
         pch = 16, col = "red", cex = .8) 
  axis(1, tcl = .5); axis(2, tcl = .5); box() 

 

# closing connection to netCDF file 
  nc_close(nc) 
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