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Abstract
1.	 Spatial	 capture–recapture	 (SCR)	models	 are	 commonly	 used	 for	 analysing	 data	
collected	 using	 noninvasive	 genetic	 sampling	 (NGS).	 Opportunistic	 NGS	 often	
leads	 to	detections	 that	do	not	occur	at	discrete	detector	 locations.	Therefore,	
spatial	aggregation	of	individual	detections	into	fixed	detectors	(e.g.,	centre	of	grid	
cells)	is	an	option	to	increase	computing	speed	of	SCR	analyses.	However,	it	may	
reduce	precision	and	accuracy	of	parameter	estimations.

2.	 Using	simulations,	we	explored	the	impact	that	spatial	aggregation	of	detections	
has	on	 a	 trade-off	 between	 computing	 time	 and	parameter	 precision	 and	bias,	
under	a	range	of	biological	conditions.	We	used	three	different	observation	mod-
els:	the	commonly	used	Poisson	and	Bernoulli	models,	as	well	as	a	novel	way	to	
partially	 aggregate	 detections	 (Partially	Aggregated	Binary	model	 [PAB])	 to	 re-
duce	the	loss	of	information	after	aggregating	binary	detections.	The	PAB	model	
divides	detectors	into	K	subdetectors	and	models	the	frequency	of	subdetectors	
with	more	 than	one	detection	 as	 a	binomial	 response	with	 a	 sample	 size	of	K.	
Finally,	we	demonstrate	the	consequences	of	aggregation	and	the	use	of	the	PAB	
model	using	NGS	data	from	the	monitoring	of	wolverine	(Gulo gulo)	in	Norway.

3.	 Spatial	aggregation	of	detections,	while	reducing	computation	time,	does	indeed	
incur	costs	in	terms	of	reduced	precision	and	accuracy,	especially	for	the	param-
eters	of	the	detection	function.	SCR	models	estimated	abundance	with	a	low	bias	
(<10%)	even	at	high	degree	of	aggregation,	but	only	for	the	Poisson	and	PAB	mod-
els.	Overall,	the	cost	of	aggregation	is	mitigated	when	using	the	Poisson	and	PAB	
models.	At	 the	 same	 level	of	 aggregation,	 the	PAB	observation	model	out-per-
forms	the	Bernoulli	model	 in	terms	of	accuracy	of	estimates,	while	offering	the	
benefits	of	 a	binary	observation	model	 (less	assumptions	about	 the	underlying	
ecological	process)	over	the	count-based	model.

4.	 We	recommend	that	detector	spacing	after	aggregation	does	not	exceed	1.5	times	
the	scale-parameter	of	the	detection	function	in	order	to	limit	bias.	We	recommend	
the	use	of	the	PAB	observation	model	when	performing	spatial	aggregation	of	binary	
data	as	it	can	mitigate	the	cost	of	aggregation,	compared	to	the	Bernoulli	model.
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1  | INTRODUC TION

Spatially	 explicit	 capture–recapture	 models	 (SCR;	 Efford,	 2004;	
Borchers	 &	 Efford,	 2008;	 Royle	 &	 Young,	 2008;	 Royle,	 Chandler,	
Sollmann,	&	Gardner,	2014)	are	rapidly	growing	in	popularity	for	eco-
logical	data	analysis.	SCR	models	are	commonly	used	for	estimating	
density	(Bischof,	Brøseth,	&	Gimenez,	2016;	Kéry,	Gardner,	Stoeckle,	
Weber,	 &	 Royle,	 2011;	 Royle,	 Magoun,	 Gardner,	 Valkenburg,	 &	
Lowell,	2011),	but	their	scope	of	applications	is	expanding	(Bischof,	
Steyaert,	&	Kindberg,	2017;	Royle,	Fuller,	&	Sutherland,	2018).	Like	
nonspatial	 capture–recapture	 models	 (CR),	 SCR	 models	 estimate	
ecological	parameters	while	accounting	 for	 imperfect	detection	of	
individuals.	However,	SCR	models	also	utilize	the	 information	con-
tained	in	the	spatial	configuration	of	detections	and	nondetections	
to	yield	spatially	explicit	estimates	of	abundance.

At	their	core,	SCR	models	describe	the	distribution	of	latent	ac-
tivity	centres	(AC;	centroid	of	an	individual’s	activity	during	the	time	
of	sampling)	of	individuals	in	a	population	from	the	spatial	configura-
tion	of	individual	detections	and	nondetections.	SCR	models	couple	
a	spatial	point	process	model	describing	 the	spatial	distribution	of	
individual	ACs	with	an	observation	model	 that	describes	 the	 rela-
tionship	between	detection	probability	at	detectors	(see	below	for	
definition)	and	the	distance	from	the	AC.	In	SCR,	spatial	detections	
of	 individuals	 can	 be	 derived	 from	 a	 multitude	 of	 methods,	 from	
physical	 capture	 and	 marking,	 to	 genetic,	 acoustic	 or	 visual/pho-
tographic	detections.	These	detections	occur	at	so-	called	traps	or,	
more	generally,	detectors.	Depending	on	the	data	collection	meth-
ods,	detections	may	be	associated	with	the	point	locations	of	physi-
cal	detectors	or	detection	devices,	but	could	also	refer	to	transects,	
irregular	or	gridded	search	areas	(Efford,	Borchers,	&	Byrom,	2009;	
Efford,	 Dawson,	 &	 Borchers,	 2009;	 Royle,	 Kéry,	 &	 Guélat,	 2011;	
Royle	et	al.,	2014).

Spatial	 capture–recapture	 surveys,	 due	 to	 their	 spatial	 dimen-
sion,	yield	extensive	detection	histories	 (i.e.,	detections/nondetec-
tions	of	every	individual	at	every	detector).	This,	in	turn,	makes	the	
analysis	 of	 SCR	 data	 computationally	 intensive	 (e.g.,	 computation	
time),	 compared	with	 nonspatial	 CR.	 This	 is	 especially	 true	 if	 sur-
veys	cover	 large	areas	and/or	detections	are	recorded	at	high	spa-
tial	 resolution.	 For	 example,	 search-	encounter	 methods	 (by	 foot,	
car	 or	 some	 sort	 of	 transects)	 generate	 detections	 from	 uniquely	
identified	individuals	(e.g.,	NGS;	noninvasive	genetic	sampling)	 in	a	
continuous	space,	which	may	result	in	large	datasets	when	data	are	
maintained	 at	 a	 high	 spatial	 resolution.	 Large	 SCR	 datasets	might	
also	concern	users	 that	wish	to	conduct	SCR	analysis	with	several	
thousands	of	detectors	(e.g.,	camera	traps	network	over	large	study	
areas).	This	study	was	motivated	by	our	own	challenge	in	an	ongoing	
large	carnivore	monitoring	programme	in	Scandinavia,	where	we	aim	
to	estimate	density	of	wolves	(Canis lupus),	bears	(Ursus arctos)	and	
wolverines	 (Gulo gulo)	 across	 two	 countries	 (Norway	and	Sweden)	
spanning	>700,000	km2,	using	NGS	data	from	several	thousand	indi-
viduals	over	>10	years	of	data	collection.

The	most	 straightforward	way	 of	 coping	with	 such	 large	 data	
quantities	 is	 to	 use	 some	 form	 of	 data	 summarization	 through	

spatial	aggregation.	For	example,	NGS	data	collected	using	search-	
encounter	surveys	result	in	detection	locations	in	continuous	space.	
As	an	alternative	to	modeling	the	continuous	space	search	process,	
it	is	convenient	to	define	pseudo-	detectors	to	be	the	centres	of	grid	
cells	of	some	prescribed	size	and	then	associate	each	detection	to	
the	 closest	 grid	 cell	 centre	 (i.e.,	 aggregation	 of	 detections	 to	 grid	
cells,	Russell	et	al.,	2012;	Bischof,	Brøseth,	et	al.,	2016).	While	ag-
gregation	has	 the	benefits	of	 reducing	 the	computation	burden,	 it	
comes	at	a	cost,	as	some	 information	 is	 lost	 in	 the	process.	When	
aggregating	 detections	 over	 grids,	 Russell	 et	al.	 (2012)	 found	 that	
estimates	of	abundance	seems	to	be	relatively	robust	to	the	choice	
of	grid	cell	size.	This	suggests	that	one	could	use	a	relatively	coarse	
grid	cell	size,	thereby	reducing	the	number	of	detectors	and	increas-
ing	computing	speed.	From	a	design	standpoint,	 there	are	general	
guidelines	to	keep	detector	spacing	below	a	certain	level	relative	to	
the	home	range	size	of	studied	species	(see	Royle	et	al.,	2014;	Sun,	
Fuller,	&	Royle,	2014).	However,	to	our	knowledge,	there	exists	no	
guidelines	to	aggregate	detections	based	on	a	formal	quantification	
of	the	costs	and	benefits	of	aggregation	in	SCR	analyses.

The	two	most	common	observation	models	used	in	SCR	are	the	
Poisson	(i.e.,	count	data)	and	the	Bernoulli	(i.e.,	binary	data)	(Bischof	
et	al.,	2017;	Blanc,	Marboutin,	Gatti,	&	Gimenez,	2013;	Muneza	et	al.,	
2017;	Royle	et	al.,	 2014).	The	choice	of	model	mostly	depends	on	
our	understanding	of	the	underlying	observation	process	(Dawson	&	
Efford,	2009;	Royle	et	al.,	2014).	For	example,	when	it	is	possible	for	
the	number	of	detections	at	a	detector	per	occasion	to	be	>1,	then	
a	Poisson	model	 (or	 negative	binomial)	may	be	 appropriate	 (Royle	
et	al.,	2014).	Therefore,	the	type	of	data	and	the	choice	of	observa-
tion	model	dictate	the	outcome	of	spatial	aggregation	of	individual	
detections	and	the	amount	of	original	information	preserved.	Count	
models,	such	as	Poisson	models	for	detection	frequency	data,	per-
mit	 summing	 of	 individual	 detections	 across	 spatial	 units	 without	
discarding	any	detections.	However,	 spatial	aggregation	 for	binary	
models	is	liable	to	result	in	a	loss	of	information	as	all	but	the	first	
detection	of	an	individual	within	a	given	spatial	unit	are	ignored.

This	study	has	two	objectives:	(a)	to	provide	quantitative	infor-
mation	about	 the	consequences	of	 spatially	aggregating	 individual	
detections	over	detectors,	leading	to	practical	guidelines	for	users,	
and	(b)	to	 introduce	a	novel	approach—the	partially	aggregated	bi-
nary	 (PAB)	observation	model—which	reduces	the	 loss	of	 informa-
tion	arising	from	simple	spatial	aggregation	of	binary	data	through	
the	use	of	a	Binomial	process.	Although	the	possibility	of	spatially	
aggregating	detector-	level	detections	 to	 form	a	Binomial	 response	
has	 been	 mentioned	 earlier	 (Efford,	 Borchers,	 &	 Mowat,	 2013;	
Efford,	Dawson,	et	al.,	2009),	to	our	knowledge	it	has	neither	been	
formalized,	nor	its	costs	and	benefits	formally	quantified.

Using	simulations,	we	systematically	tested	the	effect	of	increas-
ing	 spatial	 aggregation	 on	 parameter	 estimates	 using	 the	 Poisson	
(counts	of	detections	of	individuals),	the	Bernoulli	(binary	detections	
of	individuals),	and	the	PAB	observation	models.	We	simulated	de-
tections	of	individuals	at	a	fine	spatial	scale	(i.e.,	with	a	high	number	
of	detectors	relative	to	home	range	size)	and	then	aggregated	detec-
tions	over	increasingly	larger	grid	cells,	thereby	reducing	the	number	
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of	detectors	(Figure	1).	This	allowed	us	to	mimic	the	process	that	the	
user	may	follow	in	order	to	balance	spatial	resolution	and	comput-
ing	 speed.	We	 then	 fitted	SCR	models	 to	each	 simulated	 scenario	
and	evaluated	their	performance	(precision	and	bias),	as	well	as	their	
use	of	 the	 available	 information	 and	 computational	 speed.	 Finally,	
we	 showcase	 the	 application	 of	 the	 PAB	model	with	 an	 empirical	
example:	density	estimation	using	noninvasive	genetic	sampling	of	
the	wolverine	in	Norway.

2  | MATERIAL S AND METHODS

2.1 | Basic spatial capture–recapture model

The	observation	process	describes	the	relationship	between	an	in-
dividual’s	detection	probability	at	a	given	detector	and	the	distance 
 Di,j	between	detector	j and individual i’s	AC	(latent	variable).	In	our	
example,	we	considered	that	a	detector	represents	any	location	at	
which	an	individual	can	be	detected.	We	assumed	that	ACs	were	uni-
formly	distributed	within	the	region	under	study.	A	commonly	used	
detection	function	is	the	half-	normal,	describing	the	probability	pi,j 
of	detecting	individual	i	at	detector	j

where	p0	 is	 the	 expected	 detection	 probability	 at	 the	AC	 loca-
tion.	The	scale	parameter	σ	can	be	directly	linked	to	home	range	
size	(Royle	et	al.,	2014)	in	cases	where	the	shape	of	the	detection	
function	arises	 from	the	utilization	distribution	 (home	range)	of	
the	 study	 organism.	More	 generally,	 σ	 is	 related	 to	 the	 extent	
of	space	used	over	the	period	of	study.	In	addition,	σ	could	also	
determine	 the	 distance	 from	which	 acoustic	 signals	 can	 be	 de-
tected	 (Dawson	 &	 Efford,	 2009).	We	 assumed	 homogeneity	 of	
the	parameters	of	the	detection	function	across	individuals	and	
the	region.

Binary	 detections	 (detection:	 y	=	1;	 nondetection:	 y	=	0)	 of	 in-
dividuals	at	any	given	detector	then	follow	a	Bernoulli	distribution	
with	probability	pi,j

Counts	 of	 detections	 can	 alternatively	 be	 modelled	 with	 a	
Poisson	distribution:

(1)pi,j = p0. exp

(

−D2
i,j

2σ2

)

,

(2)yi,j ∼ Bernoulli (pi,j)

F IGURE  1 Conceptualization	of	spatial	aggregation	of	detectors	(represented	by	centroids	of	grid	cell)	with	the	application	of	a	larger	
regular	grid	(aggregated grid/primary grid)	to	the	original	gridded	detector	(original grid).	It	illustrates	the	spatial	detection	of	one	individual	
(filled	black	diamond:	activity	centre)	after	applying	Equation	7.	Original	detection	histories	before	spatial	aggregation	are	represented	in	the	
first	column	(No	(1)),	with	increasing	aggregation	(4,	9,	16,	and	36	cells)	from	left	to	right.	The	three	different	observation	models	considered	
in	the	analysis	are	shown	in	rows:	Poisson	for	count	(top),	Bernoulli	(middle)	and	partially	aggregated	binary	(PAB,	bottom)	for	binary	data.	
The	Bernoulli	and	PAB	models	are	identical	in	the	absence	of	aggregation.	The	PAB	model	allows	for	spatial	aggregation	of	binary	data	
without	complete	loss	of	all	individual	detection	events	at	the	original	grid	level.	For	illustration,	the	number	of	individual	detections	retained	
at	the	same	detector	(the	15th	detector)	is	shown	for	each	model	type	at	maximum	aggregation

yij ~ Poisson(λ); y1,15 = 75

yij ~ Bernoulli(p); y1,15 = 1

yij ~ Binomial(36, p); y1,15 = 28
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where	λi,j,	the	mean	number	of	detections	of	individual	i	at	detector	
j,	is	also	described	using	the	half-	normal	detection	function:

where	λ0	is	the	expected	number	of	detections	at	the	AC.

2.2 | The partially aggregated binary observation  
model

Spatial	capture–recapture	studies	have	used	Binomial	observation	
models	as	an	approach	to	accommodate	multiple	temporal	binary	
capture	occasions	(Efford,	2011;	Royle,	Karanth,	Gopalaswamy,	&	
Kumar,	2009).	Using	PAB,	we	adapted	this	approach	to	space	by	
converting	 original	 detectors	 into	multiple	 spatial	 binary	 detec-
tors	 (K )	associated	with	a	new	aggregated	detector	grid.	Spatial	
aggregation	of	binary	detection	data	leads	to	omission	of	detec-
tions,	 if	 the	outcome	again	 is	 to	 follow	a	Bernoulli	 distribution.	
This	 is	 because	any	pattern	of	detections	 and	nondetections	 at	
original	 detectors	 is	 reduced	 to	 a	 single	binary	 response	during	
aggregation.	 In	 our	 example,	 detectors	 are	 represented	 in	 the	
form	of	 grid	 cells	 but	 they	 could	be	defined	as	 any	other	 types	
of	 detectors.	 With	 the	 PAB	 observation	 model,	 each	 primary	
grid	cell	 (aggregated	detector)	 is	 subdivided	 into	K	 subgrid	cells	
(Figure	1).	Then	the	response,	the	frequency	of	subgrid	cells	with	
at	least	1	detection,	is	modelled	as	a	binomial	response	based	on	
a	sample	size	of	K	(Figure	1,	Equation	5),	where	K	represents	the	
number	of	subgrid	cells	within	the	primary	grid	cell.

This	partial	aggregation	may	be	an	efficient	alternative	to	an	aggre-
gation	following	a	Bernoulli	model	because	it	reduces	the	number	of	
detectors	while	retaining	more	information	about	individual	detec-
tions	at	each	aggregated	detector.

2.3 | Simulations

2.3.1 | SCR simulations

We	simulated	SCR	data	on	a	region	S	represented	by	a	square	pol-
ygon	divided	 into	24	×	24	 equal	 sized	 grid	 cells	 (Figure	2).	 For	 the	
purposes	of	the	simulations,	the	centre	of	each	of	the	resulting	576	
cells	represented	a	detector,	with	a	detector	spacing	of	1	distance	
unit.	We	 also	 considered	 a	 buffer	 around	 the	 polygon	 equivalent	
to	two	times	σ	to	yield	unbiased	density	estimates	(Figure	2,	Royle	
et	al.,	2014).	The	simulated	population	was	demographically	and	ge-
ographically	closed	(i.e.,	no	birth,	death,	immigration,	or	emigration	
during	the	sampling	period).

We	simulated	a	 fixed	number	N	of	 individuals.	The	 location	of	
their	activity	centres	(ACs),	si	with	geographic	coordinates	si = (sxi, syi)  

for	each	 individual	 i	 (i =	1,	…,	N)	of	 the	population,	were	uniformly	
and	randomly	distributed	over	the	region	S.

To	simulate	spatially	explicit	detections	of	individuals,	we	set	the	
capture	probability	of	each	individual	and	each	detector	as	a	func-
tion	of	 the	distance	between	 its	activity	centre	and	 the	detectors	
using	a	half-	normal	detection	function	(Equation	1).	We	then	created	
detection	histories	y	for	individual	i	at	detector	j	by	sampling	from	a	
Poisson	distribution	for	a	single	temporal	occasion.

2.3.2 | Spatial aggregation

Once	 individual	 detections	 were	 obtained	 at	 the	 original	 high-	
resolution	 detector	 grid	 (original grid,	 Figure	1	 top-	left	 panel),	 we	
aggregated	 individual	 detections	 over	 a	 larger	 spatial	 unit	 by	 ag-
gregating	 detectors	 (i.e.,	 cells)	 over	 4,	 9,	 16,	 and	 36	 cells	 of	 the	
original	grid.	This	resulted	in	new	grids	(aggregated grids)	with	a	cor-
responding	detector	spacing	of	2,	3,	4,	and	6	distance	units	which	

(3)yi,j∼Poisson (λi,j),

(4)λi,j=λ0 ⋅exp

(

−D2
i,j

2σ2

)

,

(5)yi,j ∼ Binomial (pi,j,K)
(6)si∼Uniform

(

S
)

(7)yi,j∼Poisson

(

λ0 ⋅exp

(

−D2
i,j

2σ2

))

F IGURE  2 Location	of	individual	activity	centres	(AC;	coloured	
points)	placed	randomly	within	the	habitat.	The	white	polygon	
represents	the	area	covered	by	detector	grid	(grey	points)	and	the	
grey	polygon	the	buffer.	The	Poisson	observation	model	leads	to	
realized	counts	of	individual	detection	throughout	the	detector	
grid	following	the	half-	normal	detection	function	(Equation	7).	
Detections	are	connected	with	the	respective	individual	AC	
with	colour-	coded	lines;	ACs	not	linked	to	segments	represent	
undetected	individuals
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exponentially	decreased	 the	number	of	detectors	 from	576	at	 the	
original	grid	level	to	144,	64,	36,	and	16	detectors	(Figure	1).

We	 then	 aggregated	 detections	 consistently	 with	 the	 obser-
vation	 process	 represented	 in	 Figure	1:	 (a)	 for	 each	 individual,	we	
summed	all	detections	that	occurred	within	aggregated	grid	cells	for	
the	Poisson	model	(Figure	1,	top	row);	(b)	we	recorded	whether	an	
individual	was	detected	at	least	once	within	an	aggregated	grid	cell	
for	 the	application	of	 the	Bernoulli	observation	model	 (also	called	
“proximity	 detector”	 model	 (Efford,	 2017),	 Figure	1,	 middle	 row);	
and	(c)	we	introduced	a	novel	way	of	aggregating	detections	for	the	
application	the	PAB	observation	model	(Figure	1,	bottom	row).	The	
binary	detections	data	at	each	of	the	original	grid	cells	were	treated	
as	 the	 outcomes	 of	 different	Bernoulli	 trials,	 yielding	 a	 binomially	
distributed	 response	 at	 the	 aggregated	 grid	 level.	 The	 number	 of	
subgrids	 (K)	was	set	as	 the	 total	number	of	original	grid	cells	con-
tained	in	each	aggregated	grid	cell	(Figure	1).

We	summed	the	number	of	detections	over	aggregated	grid	cells	
(n.cells)	when	aggregating	the	capture	history	for	the	Poisson	model.	
Therefore,	 the	mean	 of	 the	 Poisson	 distribution	 of	 λ0	 becomes	 a	
function	of	 the	number	of	 aggregated	 cells	 after	 aggregation.	We	
estimated	 the	 “effective”	 λ0	 as	 n.cells* λ0,	 so	 λ0	 can	 be	 compared	
among	aggregation	level.	For	the	simulation	sets	without	spatial	ag-
gregation,	n.cells	was	set	to	1.	Additionally,	because	our	“raw”	data	
were	simulated	using	a	Poisson	distribution	 (counts	of	detections),	
we	used	a	link	from	the	Poisson	model	to	the	Bernoulli	model	(Royle	
et	al.,	2014)	 to	obtain	 the	probability	of	observing	a	count	greater	
than	0	for	the	Bernoulli	and	PAB	models:

2.3.3 | Simulation scenarios

The	scale	parameter	σ	was	set	to	2	spatial	grid	units	for	all	individu-
als,	 twice	 the	minimum	distance	between	 two	detectors	 (detector	
spacing)	 in	 the	 highest	 detector	 grid	 resolution	 (original	 grid).	 To	
evaluate	the	response	of	SCR	models	to	different	combinations	of	
population	 and	 survey	 characteristics,	 we	 simulated	 populations	
characterized	by	a	low	(density	=	0.05	per	cell;	N	=	50)	and	high	den-
sity	of	 individuals	per	grid	cell	 (density	=	0.1	per	cell,	N	=	100).	We	
used	0.1	and	0.25	as	baseline	expected	number	of	detections	λ0	for	
all	detectors	to	yield	a	lower	(~60%)	and	higher	(~80%)	proportion	
of	N	being	detected	at	least	once.	At	the	original	scale,	aggregation	
was	set	to	4,	9,	16,	and	36	cells	which	corresponded	to	1,	1.5,	2,	and	
3	times	σ	(Figure	1).

2.4 | Data augmentation

We	used	data	augmentation	(Royle,	Dorazio,	&	Link,	2007)	to	ob-
tain	 an	 estimate	 of	 abundance	 (Kéry	 &	 Schaub,	 2011).	We	 aug-
mented	 the	dataset,	 so	 that	 the	 sum	of	 the	number	of	detected	
and	 augmented	 individuals	 was	 always	 equal	 to	 five	 times	 the	
number	of	simulated	individuals.	We	associated	a	latent	indicator	

zi	 to	every	 individual	 that	 reflected	 the	probability	ψ	 of	 an	 indi-
vidual	 to	be	 a	member	of	 the	population.	We	defined	 zi	 as	 a	 bi-
nary	variable	equal	to	1	when	an	individual	was	a	member	of	the	
population	and	0	otherwise.	We	then	obtained	abundance	(N)	by	
summing	up	vector	z.

2.5 | Model fitting

We	fitted	SCR	models	in	a	Bayesian	framework	using	Markov	chain	
Monte	 Carlo	 (MCMC)	 to	 100	 simulations	 for	 each	 combination	 of	
parameters.	 We	 implemented	 all	 analyses	 using	 JAGS	 (Plummer,	
2003)	with	the	package	rjags	 (Plummer,	2016)	 in	R	version	3.3.3	(R	
Core	Team,	2017).	We	ran	3,000	iterations	 in	three	chains	after	an	
adaptive	phase	of	1,000	 iterations	and	thinned,	so	that	every	third	
iteration	 was	 retained.	 Models	 were	 considered	 to	 have	 reached	
convergence	when	 the	Gelman–Rubin	diagnostic	 value	gelman.diag 
function	in	coda	package	(Brooks	&	Gelman,	1998;	Gelman	&	Rubin,	
1992;	Plummer,	Best,	Cowles,	&	Vines,	2006)	for	all	parameters	fell	
below	1.1	for	≥1,000	consecutive	iterations.	JAGS	codes	for	the	dif-
ferent	SCR	models	and	simulations	used	are	provided	in	Supporting	
Information	S1	and	S2.	Priors	and	initial	values	are	listed	in	Supporting	
Information	S3,	Table	S3.1.

2.6 | Evaluating the performance of the models

We	 evaluated	 the	 performance	 of	 each	 SCR	 model	 in	 estimating	
abundance	(N)	and	the	parameters	of	the	detection	function	(σ and 
λ0).	We	quantified	the	relative	bias	(RB=

1

θn

∑n

i=1
(θ̂i−θ))	and	the	pre-

cision	using	the	coefficient	of	variation	(CV=
SD(θ̂)

θ̂

×100)	(Walther	&	
Moore,	2005),	where	n	is	the	number	of	iterations,	SD	is	the	stand-
ard	deviation,	θ	 is	 the	 true	and	 θ̂	 is	 the	estimate	of	 the	parameter	
obtained	 from	 MCMC.	 In	 addition,	 we	 calculated	 the	 95%	 cred-
ible	 interval	 coverage	 as	 the	percentage	of	 simulations	where	 the	 
credible	interval	contained	the	true	value.	As	a	measure	of	conver-
gence	speed,	we	recorded	the	average	number	of	iterations	follow-
ing	 the	 adaptive	 phase	 after	 which	 the	 Gelman–Rubin	 diagnostic	
value	fell	below	1.1	for	≥1,000	consecutive	 iterations.	To	quantify	
computing	 time	 for	each	scenario,	we	ran	10	 iterations	 for	20	dif-
ferent	simulations	of	each	scenario	on	the	same	computer	(Intel(R)	
Core(TM)	i7-	7700K	CPU	4.20GHz	with	62GB	of	ram).

2.7 | Empirical case study: The wolverines

2.7.1 | Data

We	used	wolverine	 fecal	 and	 hair	 samples	 collected	 by	 26	 differ-
ent	observers	from	the	State	Nature	Inspectorate	in	Troms	County	
(20,300	km2)	 in	 Northern	 Norway.	 For	 safety	 reasons,	 observers	
work	 in	pairs	when	snow	 tracking	wolverines	with	 snowmobile	or	
on	cross-	country	ski	in	the	mountains	in	wintertime.	Observers	may	
search	the	same	areas	multiple	times	per	winter,	but	areas	searched	
do	not	cover	the	entire	county.	A	total	trail	length	of	approximately	
16,000	km	 was	 searched	 between	 February	 and	 May	 2012	 as	 a	

(8)pi,j
(

yi,j>0
)

=1−exp (−λi,j)
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part	of	the	Norwegian	Large	Predator	Monitoring	Program.	Genetic	
analysis	was	performed	on	all	collected	samples,	and	DNA	was	ex-
tracted	 and	 individuals	 identified	 using	 microsatellite	 genotyping	
(see	Flagstad	et	al.,	2004;	Bischof,	Gregersen,	Brøseth,	Ellegren,	&	
Flagstad,	2016	 for	a	complete	description	of	 the	genetic	analysis).	
As	a	result,	the	genetic	ID	and	sex	of	individual	wolverines,	as	well	
as	spatial	location	of	the	detections	were	known.	We	used	97	(1	hair,	
96	scats)	and	86	(3	hair,	83	scats)	detections	of	44	and	27	different	
females	and	males,	respectively	(Figure	3a).	We	applied	a	Bernoulli	
and	a	PAB	observation	model	while	spatially	aggregating	the	detec-
tions	over	grids	of	different	coarseness	(Figure	1).	We	started	with	
an	original	grid	of	4,551	detectors	(i.e.,	searched	cell	centre)	spaced	
every	2	km	and	then	 increased	detector	spacing	to	4,	6,	8,	12,	14,	
and	16	km,	which	resulted	 in	aggregations	of	detections	over	4,	9,	
16,	36,	49,	and	64	original	grid	cells	and	led	to	1,767,	994,	658,	352,	
280,	 and	233	detectors,	 respectively	 (Figure	3b).	During	 field	 col-
lection,	the	coordinates	of	all	search	track	logs	were	recorded	with	
GPS-	receivers.	We	 considered	 detector	 grid	 cells	 that	 intersected	
a	 search	 track	 as	 detectors	 and	 as	 active	 subgrid	 cell	 (K)	 for	 the	
PAB	models.	We	used	 a	 binary	 observation	model	 as	 the	 basis	 in	
the	empirical	analysis,	instead	of	the	Poisson	observation	model,	as	
the	exact	process	by	which	detections	accumulate	may	be	unknown	
during	noninvasive	genetic	sampling	studies.	In	particular,	scat	depo-
sition	for	many	species	is	not	likely	to	be	independent	and	the	binary	
observation	model	 avoids	 having	 to	 specify	 a	model	 for	 noninde-
pendence	of	detection	events.	In	such	cases	the	binary	observation	
model	 is	 the	 preferred	 choice	 of	 observation	 model	 (Royle	 et	al.,	

2014),	as	all	but	the	first	detection	are	discarded.	We	therefore	did	
not	use	Equation	8	and	estimated	p0	instead	of	λ0.

2.7.2 | Modelling

Because	 male	 wolverines	 tend	 to	 have	 larger	 home	 ranges	 than	
females	 (Bischof,	 Gregersen,	 et	al.,	 2016;	 Persson,	 Wedholm,	 &	
Segerström,	2010),	we	fitted	separate	models	for	males	and	females,	
with	a	sex-	specific	buffer	of	17	km	for	males	and	10	km	for	females	
(i.e.,	 approximately	2σ,	 as	 revealed	by	preliminary	analyses).	Using	
the	PAB	model,	we	could	record	the	number	of	active	original	grid	
cells	K	for	each	aggregated	grid	cell.	We	ran	5,000	iterations	of	three	
chains	after	 an	adaptive	phase	of	1,000	 iterations	with	a	 thinning	
rate	of	three.	We	considered	parameter	estimates	from	the	Bernoulli	
model	at	 the	original	grid	cell	 size	 (i.e.,	high	 resolution)	as	 the	 ref-
erence	 estimates.	 We	 then	 explored	 differences	 between	 mean	
parameter	estimates	and	confidence	 intervals	provided	by	the	dif-
ferent	SCR	models	at	different	 level	of	aggregation.	As	during	 the	
simulations,	we	recorded	convergence,	computing	speed	and	num-
ber	of	detections	associated	with	the	Bernoulli	and	PAB	models.

3  | RESULTS

3.1 | Simulations

We	ran	5,600	different	models	 corresponding	 to	56	unique	 simu-
lated	 scenarios.	 All	 models	 converged	 and	 1,000	 iterations	 were	

F IGURE  3  (a)	Representation	of	the	study	area	(within	white	borders;	Troms,	Norway)	and	noninvasive	genetic	samples	from	wolverines	
collected	in	2012	(dots,	red	=	female,	blue	=	male)	used	to	compute	spatial	capture–recapture	(SCR)	models.	Grey	lines	represent	search-	
tracks.	(b)	Configuration	of	detectors	after	different	degrees	of	spatial	aggregation.	Aggregation	1	shows	the	detectors	at	the	original	grid	
level	(detector	spacing	=	2	km;	Number	of	detector	=	4,551).	Aggregation	16	and	64	shows	detectors	after	aggregating	grids	over	16	and	64	
original	grid	cells,	and	corresponds	to	detector	spacing	of	8	(658	detectors)	and	16	km	(233	detectors),	respectively.	(c)	Estimated	average	
density	maps	of	female	wolverines	per	25km2	at	the	original	grid	cell	size	obtained	using	SCR	model	(Aggregation1;	Bernoulli)	and	after	
aggregating	over	16	and	64	original	grid	cells	using	the	Bernoulli	and	partially	aggregated	binary	models.	The	density	estimates	presented	
for	wolverines	in	Troms	must	be	interpreted	with	caution,	as	our	SCR	models	represent	a	strong	simplification	of	the	reality
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sufficient	(Gelman–Rubin	<1.1)	to	obtain	convergence	for	99.9%	of	
the	models.

3.1.1 | Parameters of the detection function (σ, λ0)

Regardless	of	 the	 type	of	observation	model	used,	 spatial	 aggre-
gation	of	detections	 led	to	overestimation	of	σ	and	underestima-
tion	of	λ0.	Aggregation	also	led	to	a	decrease	of	the	precision	and	
coverage	 (Figure	4,	 Supporting	 Information	 S3,	 Table	S3.2.A)	 but	
the	magnitude	and	 rate	at	which	bias	 increased	with	aggregation	
was	 larger	 for	 the	 Bernoulli	 compared	 to	 the	 Poisson	 and	 PAB	
models	 (Figure	4,	 Supporting	 Information	 S3,	 Table	S3.2.A).	 At	
large	 population	 size	 (N	=	100)	 and	 high	 detectability	 (λ0	=	0.25),	
the	aggregation	of	detections	over	nine	original	cells	and	the	use	
of	 the	Bernoulli	model	caused	a	 relative	bias	 in	σ	 that	was	about	
three	times	larger	for	the	Bernoulli	 (0.27;	SD =	0.03)	compared	to	
the	 Poisson	 (0.09;	 SD =	0.04)	 and	 PAB	 models	 (0.08;	 SD = 0.03; 
Supporting	 Information	S3,	Table	S3.2.A).	We	observed	the	same	

pattern	for	the	estimates	of	λ0	where	aggregation	over	nine	original	
cells	 led	 to	about	 four	 times	 larger	 (negative)	 relative	bias.	While	
precision	of	σ and λ0	 estimates	 (CV)	was	 relatively	constant	with	
aggregation	for	the	Poisson	and	PAB	models,	it	increased	exponen-
tially	for	the	Bernoulli	model	(Figure	4,	Supporting	Information	S3,	
Table	S3.2.A).

3.1.2 | Abundance (N)

Spatial	 capture–recapture	models	 estimated	N	with	 no	major	 bias	
and	 imprecision	 after	 aggregation	 when	 using	 the	 Poisson	 and	
PAB	 observation	 models	 (RB	≤	0.03;	 CV	≤	6;	 Figure	4,	 Supporting	
Information	 S3,	 Table	S3.2.A).	 However,	 aggregation	 caused	 in-
creased	relative	bias	and	decreased	precision	of	N	for	the	Bernoulli	
model.	Relative	bias	 in	N	was	13–26	times	 larger	 for	 the	Bernoulli	
(RB	=	0.26;	 SD =	0.06)	 compared	 to	 Poisson	 (RB	=	0.01;	 SD	=	0.06)	
and	PAB	models	(RB = 0.02; SD =	0.06)	when	aggregating	detections	
over	36	original	cells.

F IGURE  4 Violins	plots	representing	the	relative	bias	(top	panels)	and	CV	(lower	panels)	for	σ,	N,	and	λ0	resulting	from	different	levels	
of	spatial	aggregation	of	detections	in	spatial	capture–recapture	for	N = 100 and λ0	=	0.25.	Relative	width	of	the	violins	corresponds	to	
the	posterior	density	and	white	dots	indicate	the	median	of	the	posterior.	Spatial	aggregation	was	performed	over	4,	9,	16,	and	36	original	
grid	cells	and	different	types	of	data	aggregation	were	performed	to	follow	a	Poisson,	Bernoulli	and	partially	aggregated	binary	(PAB)	
observation	models.	We	do	not	show	PAB	violins	for	aggregation	1	because	it	is	identical	to	the	Bernoulli	at	aggregation	1
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3.1.3 | Computation speed and number of 
detections used

Computing	time	required	for	10	iterations	differed	slightly	between	 
different	types	of	models	(Figure	5).	However,	regardless	of	the	ob-
servation	 model,	 the	 time	 needed	 decreased	 exponentially	 when	
aggregating	 detectors	 (Figure	5).	 For	 example,	 on	 our	 computer,	 it	
took	on	average	2.15	min	to	run	10	iterations	for	the	Poisson	model	
(N	=	100,	λ0	=	0.25)	at	the	original	grid	level	(576	detectors),	while	it	
was	about	five	times	faster	(0.47	min)	when	aggregating	detections	
over	four	grid	cells	(144	detectors).	The	Poisson	and	PAB	observation	
models	retained	more	detection	events	after	aggregation	(Figure	5).

3.1.4 | Scenarios

We	 observed	 similar	 patterns	 among	 all	 simulation	 scenarios.	
However,	 bias	 was	 higher	 at	 lower	 detection	 rates,	 and	 this	 pat-
tern	 was	 especially	 pronounced	 for	 estimates	 of	N.	 Precision	 de-
creased	 with	 lower	 detectability	 and	 when	 population	 size	 was	
low	(Figure	4,	Supporting	Information	S3,	Tables	S3.2.A–D	and	S4,		
Figures	S4.1.A-C	and		S4.2).

3.2 | The wolverine

A	maximum	 of	 1,024	 iterations	 were	 sufficient	 to	 obtain	 conver-
gence	for	all	models.	Akin	to	the	simulation	results	and	despite	large	
confidence	intervals,	aggregation	increased	the	σ	estimates	for	wol-
verines	 (Figure	6,	 Supporting	 Information	 S3,	 Table	S3.3).	 The	 in-
crease	in	estimated	σ	with	aggregation	was	less	pronounced	for	the	
PAB	compared	to	the	Bernoulli	model	and	stronger	for	females	com-
pared	to	males	(Figure	6,	Supporting	Information	S3,	Table	S3.3).	At	
the	original	grid	cell	size,	σ	for	females	was	estimated	to	be	3.73	km	
with	a	95%	CI	(3.17–4.44)	that	overlapped	with	the	mean	estimates	

obtained	 after	 aggregating	 detections	 over	 64	 cells	 for	 the	 PAB	
(4.38;	 95%	 CI	=	3.71–5.24)	 but	 not	 for	 the	 Bernoulli	 model	 (5.18;	
95%	 CI	=	4.05–6.66).	N	 estimates	 had	 large	 uncertainty	 but	 were	
more	stable	with	aggregation	for	males	than	for	females	 (Figure	6,	
Supporting	Information	S3,	Table	S3.3).

4  | DISCUSSION

Data	 aggregation	 can	 significantly	 reduce	 computation	 time	 of	
SCR	models	but,	 as	our	 study	demonstrates,	 this	comes	at	a	cost.	
Decreasing	spatial	resolution	of	input	data	leads	SCR	models	to	esti-
mate	parameters	with	reduced	precision	and	increased	bias	in	cases	
where	the	detections	are	modelled	as	the	result	of	a	Poisson	process	
and	models	that	use	a	Bernoulli	observation	process.	The	increase	
in	bias	with	coarser	input	detector	grids	is	particularly	conspicuous	
for	the	latter	type	of	model,	presumably	because	spatial	aggregation	
of	detectors	can	lead	to	a	serious	loss	of	information	(i.e.,	individual	
detections).

Although	SCR	studies	have	used	Binomial	observation	models	as	
an	approach	to	accommodate	for	multiple	temporal	binary	capture	
occasions	(Efford,	2011;	Royle	et	al.,	2009),	the	PAB	model	is,	to	our	
knowledge,	the	first	application	of	the	binomial	model	to	space	as	it	
converts	original	detectors	into	multiple	spatial	binary	detectors	(K)	
associated	with	a	new	aggregated	detector	grid.	Spatial	aggregation	
of	detections	to	fit	a	PAB	observation	model	offers	a	practical	solu-
tion	to	make	greater	use	of	the	available	data.	It	allows	aggregation	
of	the	spatial	process	across	a	coarser	grid	(i.e.,	detectors),	yet	uti-
lizing	 individual	 detections	 at	 the	original	 detector	 level.	We	have	
also	shown	a	real-	life	application	of	aggregation	of	detections,	and	
the	benefits	of	using	the	PAB	observation	model,	in	terms	of	infor-
mation	used	and	computation	speed,	to	estimate	population	density	
and	home	range	size	of	a	rare	and	elusive	species,	the	wolverine.

F IGURE  5 Number	of	detections	
events	retained	(violins)	and	average	
computing	time	(bars)	when	using	
the	Poisson,	Bernoulli	and	partially	
aggregated	binary	(PAB)	models	after	
different	degrees	of	spatial	aggregation	of	
detections	for	the	simulated	data	with	a	
large	population	size	(N	=	100)	and	a	high	
detectability	(λ0	=	0.25).	Computing	time	
in	minutes	represents	average	computing	
time	(20	repetitions)	necessary	to	run	10	
iterations
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F IGURE  6 Empirical	investigation	of	the	effects	of	spatial	aggregation	of	detections	for	noninvasive	genetic	sampling	data	from	
wolverines	in	Troms	County,	Norway	2012.	Outcomes	of	spatial	capture–recapture	(SCR)	analysis	of	spatially	aggregating	wolverine	
detections	data	over	4,	9,	16,	36,	49	and	64	cells	of	the	original	detector	grid	(aggregation	=	1	corresponds	to	original	grid	resolution	of	
2	×	2	km2	cell	size).	SCR	models	were	fitted	for	Bernoulli	and	partially	aggregated	binary	observation	models	(PAB).	(a)	Violin	plots	with	
posterior	distributions	of	the	scale	parameter	of	the	detection	function	(σ)	for	males	(blue)	and	females	(pink).	(b)	Violin	plots	of	posterior	
estimates	of	abundance	within	the	Troms	study	area	and	excluding	the	buffer	area	(Figure	3).	Relative	widths	of	the	violins	correspond	to	
the	posterior	density	and	white	dots	indicate	the	median	of	the	posterior.	Horizontal	lines	represent	model	estimates	obtained	for	the	model	
without	aggregation	used	as	a	reference.	We	do	not	show	PAB	violins	for	aggregation	1	because	it	is	identical	to	the	Bernoulli	at	aggregation	
1.	(c)	The	vertical	bars	shows	the	average	time	in	minutes	necessary	to	compute	10	iterations.	The	dotted	line	shows	the	number	of	
detections	utilized	by	each	model	and	at	a	given	level	of	aggregation.	The	abundance	estimates	presented	for	wolverines	in	Troms	must	be	
interpreted	with	caution,	as	our	spatial	capture–recapture	models	represent	a	strong	simplification	of	reality
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4.1 | Aggregation

Ideally,	spatial	aggregation	of	detections	would	not	be	necessary	
because	 SCR	 analysis	 could	 use	 information	 at	 its	 original	 scale	
and	contents.	However,	sampling	methods	such	as	NGS,	can	pro-
duce	 data	 in	 such	 quantities	 and	 recorded	 at	 such	 a	 fine	 spatial	
scale	that	some	kind	of	data	aggregation	of	detections	within	grids	
might	be	necessary	(Russell	et	al.,	2012	but	see	Royle,	Kéry,	et	al.,	
2011).	Datasets	intended	for	SCR	analysis	may	have	large	spatial	
and	 temporal	 extent,	 therefore	 reducing	 the	 number	 of	 detec-
tors	through	aggregation	 is	an	option	to	cut	down	on	computing	
times.	The	need	for	computationally	efficient	alternatives	may	be	
particularly	important	as	the	complexity	of	SCR	models	increases,	
such	 as	 open	 population	 SCR	 models	 (Bischof,	 Brøseth,	 et	al.,	
2016;	Chandler	&	Clark,	2014).

Spatial	aggregation	of	detections	leads	to	projection	of	the	true	
location	of	a	detection	to	the	nearest	aggregated	detector.	This	can	
result	in	a	loss	of	spatial	information	(coarser	resolution	of	detections)	
and	potentially	a	loss	of	information	about	detections	themselves,	es-
pecially	if	a	binary	observation	model	is	used.	Regardless	of	the	type	
of	observation	model	used,	aggregating	detections	over	larger	spatial	
units	 leads	to	overestimation	of	the	observed	area	used	by	animals	
(Marboutin,	Pruszek,	Calenge,	&	Duchamp,	2011)	and	 results	 in	an	
overestimation	of	the	scale	parameter	(σ)	of	SCR	models.	It	also	leads	
to	underestimation	of	the	baseline	detection	probability	(λ0).

After	aggregation,	SCR	models	estimated	parameters	with	most	
severe	bias	for	the	Bernoulli	observation	model.	Here,	aggregation	
led	to	both	loss	of	spatial	resolution	and	detections	(Figure	1).	This	
loss	of	 information	translates	 into	pronounced	overestimation	and	
imprecision	of	home	range	size	(σ)	and	population	size	(N)	estimated	
by	the	model.	Although	still	conspicuous,	the	consequences	of	de-
tector	aggregation	on	the	parameters	of	the	detection	function	was	
less	pronounced	for	the	Poisson	and	PAB	observation	models.	The	
choice	of	observation	model	was	particularly	critical	for	modulating	
the	effect	of	aggregation	on	estimates	of	abundance.	Relative	bias	
remained	low	(<5%)	for	both	the	Poisson	and	PAB	observation	mod-
els,	even	at	moderate	and	severe	levels	of	aggregation.

The	cost	of	spatial	aggregation	of	detection	can	be	mitigated	by	
the	choice	of	observation	model.	As	demonstrated	here,	both	 the	
Poisson	 and	 PAB	 observation	models	 outperformed	 the	 Bernoulli	
model	 with	 aggregation.	 The	 binary	 observation	 model	 has	 been	
highlighted	as	the	model	generally	 favoured	by	Royle	et	al.	 (2014),	
even	 when	 the	 sampling	 scheme	 produces	 detection	 frequencies	
(e.g.,	number	of	scats	 from	an	 individual	 found	at	a	 location).	One	
of	the	main	reason	for	this	choice	is	that	repeated	detections	over	
short	time	intervals	might	not	always	be	the	result	of	independent	
detection	 events.	 Similarly,	 the	 process	 of	 local	 scat	 deposition	
might	not	always	be	the	outcome	of	space	usage	but	likely	the	out-
come	of	more	complex	behaviors	 (Royle	et	al.,	2014).	Because	 the	
PAB	model	also	uses	binary	detection	data,	we	could	demonstrate	
its	use	to	analyse	our	noninvasive	genetic	samples	from	wolverines.	
Indeed,	the	PAB	model	is	a	natural	extension	of	the	Bernoulli	model	
since	it	makes	use	of	more	of	the	raw	data	and	use	binary	detections.

One	of	the	strengths	of	SCR	models	over	nonspatial	CR	models	
is	 the	 ability	 to	 yield	 spatially	 explicit	 predictions	 of	 abundance—
density	surfaces—for	a	study	region.	Although,	estimates	of	overall	
abundance	 remained	 relatively	unaffected	by	aggregation,	at	 least	
for	 the	 Poisson	 and	 PAB	 observation	models,	 the	 bias	 in	 the	 pa-
rameters	of	the	detection	function	(σ,	λ0)	suggests	that	high	spatial	
aggregation	of	detectors	may	noticeably	impact	the	degree	of	cor-
respondence	between	predicted	density	surfaces	and	the	true	dis-
tribution	of	activity	centres	 (Figure	3c	and	Supporting	 Information	
S5,	Table	S5.1).

4.2 | Recommendations

Our	results	suggest	that	when	possible,	the	Poisson	and	PAB	mod-
els	should	be	favoured	over	the	Bernoulli	model	when	performing	
spatial	aggregation.	Using	the	PAB	and	Poisson	models,	positive	bias	
in σ	remains	below	an	acceptable	level	(<10%)	when	spatial	aggrega-
tion	does	not	exceed	areas	larger	than	1.5	times	the	σ	of	the	studied	
species.	However,	positive	bias	in	abundance	(N)	remains	below	an	
acceptable	rate	(<10%)	even	at	high	level	of	aggregation	(up	to	three	
times	σ).	Our	results	also	suggest	that	an	overestimation	and	higher	
uncertainty	in	N	are	expected	in	study	systems	where	individual	de-
tection	probability	is	low	(i.e.,	<60%	of	N	detected),	as	it	is	often	the	
case	for	elusive	and/or	rare	species.

During	field	sampling,	we	recommend	recording	detections	and	
search	effort	at	the	finest	possible	spatial	resolution.	While	a	large	
part	of	this	fine	scale	information	is	lost	after	aggregation	using	the	
Poisson	and	the	Bernoulli	models,	we	can	still	make	use	of	 it	with	
the	PAB	model.	In	our	empirical	example,	we	could	account	for	the	
search	effort	in	each	grid,	by	using	the	number	of	original	grid	cells	
searched	for	each	aggregated	grid	cell	as	a	sample	of	size	K	 in	the	
binomial	model	(Equation	5).	This	can	help	account	for	heterogene-
ity	in	search	effort	that	would	otherwise	be	lost	when	aggregating	
over	larger	grid	cells.	We	suggest	that	original	grid	resolution	of	the	
PAB	model	can	be	as	high	as	desired,	because	a	high	resolution	will	
mitigate	the	loss	of	detection	with	aggregation.	However,	according	
to	the	characteristics	of	the	study-	system	the	user	should	make	sure	
that	 the	 resolution	of	 the	original	 grid	 cells	 is	 large	enough	 to	 ac-
count	for	independence	in	the	detection	events,	as	explained	above.

Determining	the	appropriate	detector	configuration	before	field	
sampling	is	essential	in	order	to	obtain	reliable	estimates	of	density	
using	 SCR	models	 (Sollmann,	 Gardner,	 &	 Belant,	 2012;	 Sun	 et	al.,	
2014).	However,	 due	 to	 constraints	 in	 field	 data	 collection	 or	 the	
type	of	sampling	used	(e.g.,	opportunistic	sampling),	detector	arrays	
might	not	always	be	regularly	spaced	such	as	in	our	simulations.	For	
our	empirical	study	on	wolverines,	we	tested	the	effect	of	spatially	
aggregating	detections	from	irregularly	located	detectors	(i.e.,	based	
on	search	 tracks).	Using	 this	particular	example,	we	demonstrated	
the	cost	of	spatial	aggregation	on	parameter	estimation	for	individ-
uals	having	small	(female)	and	large	(male)	home	range	size.	The	ef-
fect	of	aggregation	on	σ	was	stronger	for	individuals	having	a	smaller	
home	range	size.	Accordingly,	abundance	estimates	for	males	were	
more	stable	with	aggregation	than	estimates	obtained	for	females.	
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However,	 it	 is	 important	 to	 note	 that	 comparing	 abundance	 esti-
mates	 when	 aggregating	 irregularly	 searched	 grids	 is	 challenging	
because	aggregation	tends	to	artificially	 increase	the	area	covered	
by	detectors	 (Figure	3b).	We	therefore	recommend	additional	sim-
ulation	studies	to	explore	the	effect	of	aggregation	under	different	
detector	configuration	scenarios	or	increased	realism	on	the	ecolog-
ical	and	observation	models	(e.g.,	individual	heterogeneity	detection	
parameters).

5  | CONCLUSIONS

Although	 the	 computational	 burden	of	 SCR	 is	 still	 substantial,	 our	
results	show	that	spatially	aggregating	detections	can	be	a	relatively	
easy	way	to	significantly	reduce	computational	burden.	At	the	same	
time,	 aggregating	 too	 coarsely,	 relative	 to	 the	 focal	 species’	 home	
range	size,	could	lead	to	unacceptable	compromises	in	terms	of	pa-
rameter	precision	and	accuracy.	We	advise	against	performing	large	
spatial	aggregation	using	the	Bernoulli	model,	as	it	can	lead	to	highly	
biased	parameter	estimates,	especially	when	detectability	is	low	and	
few	individual	detections	are	available.	On	the	other	hand,	the	PAB	
model	introduced	here,	can	help	investigators	achieve	the	benefits	of	
spatial	aggregation	in	terms	of	computation	speed,	while	mitigating	
the	loss	in	parameter	precision	and	accuracy	associated	with	aggre-
gation	of	binary	data.	Spatial	aggregation	could	be	especially	helpful	
for	studies	with	a	large	spatial	extent	and	for	complex	models.
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