${ }^{1}$ Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway
${ }^{2}$ Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway

Short title: Optimal size at migration
*Correspondence: bror.jonsson@nina.no, tel: +4740480674

Optimal size at seaward migration in an anadromous salmonid. Marine Ecology Progress Series 2016 ;Volum 559. s. 193-200 DOI 10.3354/meps 11891

ABSTRACT: This study gives the probabilistic reaction norm for length at different ages of smolting before seaward migration of Atlantic salmon Salmo salar, spawning in the Norwegian River Imsa. The reaction norm was compared with the optimal length at smolting estimated as the product of survival and female fecundity on the return, given their length at smolting. Logistic regression analysis on pre-migratory and migratory fish was used to estimate the probabilistic reaction norm. Length at 50% probability of smolting varied between 11.5 cm and 13.4 cm for age groups 1 to 3 years with a minimum at Age-2. The estimated optimal length at smolting exhibited a maximum at 13.5 cm . Fecundity of adult females was not significantly affected by their length at smolting, making survival the chief variable influencing the optimal smolt size. The results lend support to the hypotheses that body length at 50\% probability of seaward migration was similar for all smolt-age-groups independent of growth, and that mean length at each age of the young fish in fresh water reflected the probability of seaward migration. The slight difference between estimated optimal length at smolting and size at 50\% probability of smolting may be chiefly caused by size dependent mortality at sea because of the tagging and larger pre-migratory mortality of young than older juveniles in the river.

KEY WORDS: Migration ecology • Anadromy • Probabilistic reaction norm • Reproductive rate • Logistic regression • smolt length • Atlantic salmon • Salmo salar

INTRODUCTION

Migration is a key life history event and occurs in all major animal taxonomic groups (Dingle \& Drake 2007). In changing and diverse environments, one habitat may not offer the best conditions for survival of the young and feeding opportunities for the juveniles. By migrating, the individuals can use different habitats, food sources and breeding grounds and/or avoid adverse conditions, predators included. By doing this, they are assumed to maximize their net reproductive rate, defined as the product of expected survival and potential number of progeny they produce (Werner \& Gillam 1984, Charnov et al. 2013). Thus, the migration strategy is inextricably linked to the variability of the species, and decisions about when to migrate is one of the drivers for early life history success (Sloat et al. 2014).

Large-scale field studies can provide valuable insight into forces that drive trait evolution. For instance, by use of the size distribution at each age of pre-migratory and migratory individuals, one can calculate the probability of migration. Furthermore, one can estimate the survival of each length group and number of eggs produced by the same groups, and use this to estimate their reproductive rate as a proxy for fitness. Heino et al. (2002a) introduced logistic regression as a tool to estimate the probabilistic maturation reaction norm and tested the method on data of Atlantic cod Gadus morhua. Corresponding estimates have been given for some other species (e.g. Morita et al. 2009, Olsen et al. 2014, Hunter et al. 2015). According to Dieckmann \& Heino (2007), advantages of probabilistic reaction norms are that they overcome systematic biases, remove effects of varying mortality rates and average juvenile somatic growth rates are defined at the level of individuals and serve as indispensable ingredients in process-based dynamical models of a population's age and size structure. Probabilistic reaction norms have wider use and been fitted for size at migration (Piou \& Prévost 2012, Castellani et al. 2015). Thus, probability functions can describe length at migration, where each fish length is associated with a certain probability of migration.

However, no one appears to have compared this reaction norm with a fitness estimate (cf. Jonsson \& Hindar 1982).

Here, we use Atlantic salmon Salmo salar as an example of how size at migration can be estimated based on long-term monitoring data. The young, called smolts, emigrate to sea when they typically are between 12 and 20 cm in body length, and grow to adult size before they return to spawn (Hansen et al. 1993). They benefit from increased energy intake and growth during the oceanic excursion (Jonsson \& Jonsson 2003). However, mortality in the ocean is high (Chaput 2012), and the risk of predation, which is assumed to be the main mortality factor, is influenced by body size, especially during early migration (Salminen 1997, Jonsson \& Jonsson 2014). The fish leave the river in small schools and various trade-offs may determine size at migration. Predation may be high if the fish is small (Magurran 1990). On the other hand, the fish risk mortality in rivers and lose growth opportunities by staying long in fresh water. For instance, growth at sea increases with decreasing size at outmigration (Jonsson \& Jonsson 2007). Thus, it is important that the size at migration is well adapted so that the product of survival and growth is maximized when integrated over the entire life span (e.g. Jonsson et al. 1984, Charnov et al. 2013).

Salmonid smolts typically migrate to sea in spring (Jonsson \& Jonsson 2014), and the decision about smolting is made in the previous autumn or winter (Thorpe 1987, Vainikka et al. 2012). The length and age at the decision can thus be estimated from the annuli marked in the scales of the fish that are formed during winter (Jonsson 1976). In the present study, we used the back-calculated lengths at early ages of returning adults to the Norwegian River Imsa to estimate the probabilistic reaction norm of how size varied with age at seaward migration of the young Atlantic salmon. Body length at 50% probability of seaward migration was used as an index of the threshold size for seaward migration. We denote optimale length at smolting the smolt associated with the highest product of total survival and fecundity at
adulthood. We hypothesized that: (1) The probability of seaward migration is size-dependent and age-independent. (2) For females, the reproductive rate is highest at 50% probability of seaward migration.

METHODS

The 1 km long River Imsa, south-western Norway ($58^{\circ} 50^{\prime} \mathrm{N}$; $5^{\circ} 58^{\prime} \mathrm{E}$), drains into the Høgsfjord estuary (salinity: 32), near Stavanger. The Atlantic salmon population produces approximately 1000 smolts annually, ranging from 325 to 3208 individuals during the study period. Smolt age varied between 1 to 4 years (Jonsson et al. 1998b). For details on the population structure and dynamics see Jonsson et al. (1991, 1998a).

Atlantic salmon were sampled in traps situated 150 m above the river estuary. A Wolf trap (Wolf 1951; apertures 10 mm , inclination 1:10) catches all descending fish larger than ca 10 cm , and a box trap catches all ascending Atlantic salmon in the river. The traps (illustrations in Jonsson \& Jonsson 2011) were emptied twice a day, at 0800 and 1500 hours, during the study period (1976-2014) except for 1994, when the river was closed because an experiment was performed in the river (Fleming et al. 2000). Total length $(0.1 \mathrm{~cm})$ and mass (g) of the fish were measured, and all smolts 12 cm and longer were individually tagged with numbered Carlin tags (Carlin 1955) after being anaesthetized with chlorobutanol before they left the river. Adults were monitored on the return. They were sexed based on external characters, and scales were taken on a subsample ($N=671$) of the fish for aging and backcalculation of growth (Jonsson 1976, Jonsson \& Stenseth 1976).

In total, 33638 smolts were tagged when descending the river 1976-2011 and 1268 adults were caught on the return 1977-2014 (Jonsson \& Jonsson 2014). Age and length of the fish the winter when they smolted, were estimated by analysis of the scales (Jonsson 1976).

Fecundity $\left(F_{\mathrm{L}}\right)$ at return to the River Imsa was estimated from the length $(L \mathrm{~cm})$ of the females at maturity:
$F_{\mathrm{L}}=0.052(\pm 0.005) \cdot L^{2.67}(\pm 0.024) ; r^{2}=0.95, \mathrm{df}=2605, P<0.001$ (cf. Jonsson et al. 1996).

We have not investigated the annual mortality of the pre-smolts in the river. Thus, this was set according to Symons (1979) as found for Canadian Atlantic salmon, at 60\% mortality during the first winter, 50% mortality from age- 1 to age- 2 and 40% annual mortality for older smolts. Mortality from eggs to smolts in the River Imsa was estimated at 0.45 \% (Jonsson \& Jonsson 2016), which is similar to the total pre-smolt mortality found in Canadian Atlantic salmon, ranging from 0.16% to 0.52% (Cunjak \& Terrien 1998). By applying the product-rule of probability theory (Devore \& Berk 2012), the cumulative mortality for each smolt age in the river was calculated.

For estimation of sea survival given their smolt length, we grouped the smolts in 2.5 mm groups, starting at lengths $11.0-11.25 \mathrm{~cm}, 11.25-11.50 \mathrm{~cm}$, etc. Recapture rate (l) of the tagged fish was used as an index of survival at sea and estimated as number of adults recaptured divided by the number of seaward-migrating young of the same cohort (Jonsson \& Jonsson 2014). The product-rule was used to estimate the probability of surviving in both river and at sea for each 2.5 mm group of smolts $\left(l_{L}\right)$, and we used unparameterized bootstrapping to estimate lengths and number of fish that died in the river before smolting at Age-1, Age-2 and Age-3 (Heino et al. 2002b).

The reaction norm for size at smolting was estimated by 3 logistic regressions, using the bootstrap data along with the observed smolt data. We analyzed the relationship between the length at smolting (L) and the probability of migrating to sea at each age by the logistic model:

$$
\mathrm{P}(X=1 \mid L)=\frac{\exp \left(\beta_{0}+\beta_{1} L\right)}{1+\exp \left(\beta_{0}+\beta_{1} L\right)}
$$

The curves were fitted using maximum likelihood estimation (Devore \& Berk 2012), and we give $1,25,50,75$ and 99% probability of smolting at ages 1,2 , and 3 years. Differences between the lengths at 50% probability of smolting of the various age groups were evaluated by creating a 95% bootstrap percentile confidence interval for each smolt age group.

To estimate the optimal length at migration we used the log-transformed linear regression of fecundity relative to length at smolting. Then, we fitted a fifth-degree polynomial to estimate mean survival rate given their smolt length. A 95\% prediction interval was estimated for new observations of the random variable, assuming that the observations were independent, normally distributed with constant variance. The reproductive rate (R) relative to length at smolting was estimated as: $R=l_{\mathrm{L}} F_{\mathrm{L}}$, where l_{L} denotes total survival and F_{L} the fecundity of adult females, given their length at smolting (Mangel 1996). We did not separate survival by sea-age at return, because all individuals were tagged and all those that returned to the River Imsa were recaptured in the trap at the river mouth whether they stayed one or two years at sea. Thus, survival at sea could be estimated for each 2.5 mm smolt length group independent of their sea-age at return.

RESULTS

Atlantic salmon of the River Imsa migrated to sea from Age-1 to Age-4, with the majority being Age-2 fish (Table 1). Mean smolt age (\pm SD) was 2.06 ± 0.32 years, and mean length at seaward migration was $16.3 \pm 1.5 \mathrm{~cm}$. There was no significant difference in length at seaward migration between sexes $(t=0.87, \mathrm{df}=1238, P>0.05)$, and there was no
significant relationship between back-calculated length at the end of the first growth season and length at smolting $\left(r^{2}=0.007, P>0.05\right)$

Young salmon exhibited accelerated growth the last year before smolting relative to those that smolted older (Table 1). For instance, back-calculated mean length of Age -1 smolts were 5 cm longer at the end of the first growth season than the length of the nonmigrants at that age, that smolted at Age-2 ($t=6.6, \mathrm{df}=622, P<0.001$). Similarly, Age-2 smolts were significantly longer at the end of the second growth season than the non-migrants that smolted at Age-3 $(t=12.5, \mathrm{df}=653, P<0.001)$, and Age-3 smolts were longer than Age4 smolts at their end of the third year $(t=2.55, \mathrm{df}=45, P<0.01)$. Moreover, smolt length increased with age, and mean length of those smolting at Age-4 was longer already one year prior to smolting, than the smolt length of those that smolted at Age-1. Back-calculated length in winter prior to smolting was on average 2 cm shorter than the observed length of the smolts when they left the river. This difference is due to growth from the winter zone is formed to the fish leave fresh water, and possibly underestimation caused by the scale reading method.

The probability of seaward migration increased with size within each smolt-age-group (Fig. 1a-c). The fit was best for the two youngest age-groups. At Age-3, most of the remaining fish migrated. The reaction norm for 50% probability of migration to sea ($L_{50 \%}$) was relatively flat, but with a minimum at Age-2, as $L_{50 \%}$ was significantly higher at Age-1 than Age-2, but did not change significantly from Age-2 to Age-3 (Fig. 1d). Lengths at 50 \% probability of seaward migration were $13.0 \mathrm{~cm}, 11.5 \mathrm{~cm}$ and 13.4 cm at Age-1, Age-2 and Age-3, respectively. If not corrected for the effect of pre-smolts mortality in the river, the estimates would have been approximately 1 cm shorter than these lengths. The width of the migration envelope ($L_{25 \%}$ - $L_{75 \%}$) increased much from Age-2 to Age-3. Within smolt age groups, fish that were shorter than $L_{50 \%}$ most probably stayed in the river one more year, whereas longer fish most probably left, but there is no exact minimum length at migration.

The probability of migrating at Age-1 was ca. 1%, and the corresponding estimated mean length of all the fish the first winter at Age-1 was 6.8 cm (Fig. 1d). At Age-2, the probabiity of migrating was 93% and estimated mean length was 15.9 cm , and at Age-3 it was 89% of the remaining fish migrated, and their mean length was 18.5 cm . Thus, there was close relationship between mean smolt length and the probability of seaward migration (error less than 5\%).

Estimated female fecundity of the returning fish did not change significantly with increasing length at seaward migration (Fig. 2a). The variation in fecundity was large exhibiting that fecundity was not an important variable influencing variation in fitness among smolt-length groups. Total survival, on the other hand, varied depending on length at smolting with a maximum at 13.6 cm (Fig 2 b). Thus, the estimated reproductive rates as measure of the optimal smolt length of the fish in the various smolt-length groups mimicked the survival curve with a maximum at 13.5 cm (Fig. 2c). If not corrected for the effects of pre-smolt mortality in fresh water, the maximum was estimated at 15.1 cm .

DISCUSSION

Based on the present data, the reaction norm of length ($\sim 11.5-13.4 \mathrm{~cm}$) at 50% migration probability was slightly shorter than the length maximizing the reproductive rate (\sim 13.5 cm), estimated as the product of survival at sea and fecundity at return to the river (hypothesis 2). However, the curve illustrating expected reproductive rate was rather flat between 13 and 14 cm . We do not know why the optimal smolt length was slightly longer than the estimated reaction norm, but assume that this may be related to the mortality estimates of the pre-smolts and tagging mortality at sea. With a relatively higher survival of old than younger pre-smolts than used here (Symons 1979), the reaction norm of length at
50% probability of migration would have been longer and closer to the length maximizing the reproductive rate. On the other hand, the smolt length maximizing the reproductive rate of untagged fish may have been shorter than our estimates based on tagged fish indicate, because tagging mortality increases with decreasing smolt size. Our survival estimates were not adjusted for any possible mortality effect of tagging. However, experimental evidence suggests that the tagging on average may double the expected mortality at sea, and is highest for small smolts (Hansen 1988). Isaksson \& Bergman (1978) estimated marine mortality of Carlin-tagged smolts. They found that the mortality at sea of 9.5-14.5 cm long Carlin tagged smolts was 3 times higher than for micro-tagged smolts of corresponding length. For longer smolts, the marine mortality was 1.5 times higher for Carlin-tagged than micro-tagged smolts. Thus, Carlin tags increase the mortality even for relatively large smolts, but less so than for smaller smolts. It is uncertain how large the extra mortality cost for smaller body size may be, but if we adjust the estimate with extra mortality as found by Isaksson \& Bergman (1978) in their 1974 experiment, the length of smolts giving maximum reproductive rate changed to 12.8 cm , which is within the variation at 50% probability of seaward migration. Thus, both our assumption about pre-smolt mortality in the river following Symons (1979) and higher tagging mortality of small smolts (Isaksson \& Bergman 1978) may have contributed to our finding of the optimal smolt length at seaward migration being slightly longer than the reaction norm for 50% probability of smolting.

Survival at sea decreased for fish being longer than 13.5 cm at smolting. This may come as a surprise (cf. Saloniemi et al. 2004), but may be because unusually large smolts are more susceptible to predation. Smolts migrate to sea in small schools, and predators may easily spot fish being different in size from the majority (Rogers et al. 2015). Thus, in this case big body may not give better protection against predators as assumed for larval fish (Miller et al. 1988, Meekan et al. 2006).

Length at 50% probability of seaward migration was little influenced by the age of the fish. Still, the estimated smolt size increased with age at smolting (Table1). This may look like a paradox, and one can easily believe that smolt-age is growth dependent as assumed by Økland et al. (1993). However, the observed result is theoretically expected (cf. Heino et al. 2002a, their Fig. 4), and parallels the finding by Morita et al. (2005) who showed that that the average size at maturity increase with age although the threshold size for maturity decreased with age in chum salmon (Oncorhynchus keta). Based on the present data, length and not growth-rate appeared to be the major determinant for age at smolting as expected if survival at sea is highly dependent on size and not age of the fish. This result lends support to our first hypothesis. Increasing smolt size with age is chiefly a consequence of that older fish were larger the year prior to smolting. Hence, relatively more fish surpassed the length at 50\% probability of migration in the subsequent year, and consequently, the smolts become larger with age.

There is a close relationship between estimated mean length of the fish in an age group and the observed proportion of fish that migrate at this length. The present estimates of 50\% probabilistic reaction norm for length at smolting is ca .2 cm longer than that suggested by Elson (1957) to be the minimum length at smolting for Atlantic salmon. More recent estimates of length at 50% migration probability of smolting varies between 8.9 cm in the River Scorff, France (Piou \& Prévost 2012), and 11.3 cm in the River Stryn, Norway (Hedger et al. 2013). There may be population-specific differences in smolt length among populations because of varying survival and growth (Jonsson et al. 1991), reflected by the genetics of the fish (Piché et al. 2008). Within populations, on the other hand, variation in size at migration may be chiefly due to phenotypic plasticity associated with variation in growth rate (Morita et al. 2009).

Individual fecundity did not change significantly with smolt size. This may be a reflection of that the same fish may not do well in both fresh and salt water. For instance, Einum et al. (2002) reported a strong negative correlation between pre- and post-smolt growth, a difference that also holds for the River Imsa salmon (Jonsson \& Jonsson 2007). The variation in individual fecundity also increases because sea-age at return varies, which may decouple the relationship between smolt and adult sizes. We do not expect influences of variation in egg size on the optimal smolt size, because fecundity and egg size are highly correlated (Jonsson et al. 1996).

Survival was the chief factor responsible for variation in expected reproductive rate of the fish moving to sea at different lengths. At sea, early natural mortality is high and may be chiefly related to predation (Craig et al. 2006, Mäntyniemi et al. 2012). There may be also a physiologically-based mortality associated with migration from fresh to salt water (Hoar 1988, Webster \& Dill 2006, Jonsson et al. 2016). Furthermore, Beamish \& Mahnken (2001) hypothesized that coho salmon Oncorhynchus kisuch year-class strength is influenced by winter mortality during the first year in the ocean. They suggested that juvenile salmon that fail to reach a critical size by the end of their first marine summer do not survive the following winter. This may also hold for Atlantic salmon. So far, however, there is no knowledge about a minimum threshold size for winter survival in this species (Friedland et al. 2009).

In all, our empirical assessment shows that the probabilistic reaction norm approach performed well for size at seaward migration. Mean length of pre-smolt fish relative to the reaction norm reflected well the probability of migration. Furthermore, the probability of 50 \% migration appeared largely independent of the age of the fish. The most important factor influencing the estimated reproductive rate of the fish was size dependent survival at sea, which was highest for medium-sized smolts. In addition, the reaction norm of 50% probability
of seaward migration appeared to be shorter than the length that maximized survival. The exact optimal size at migration is, however, difficult to estimate because of size-dependent tagging mortality and no information on how the pre-migratory mortality varied with age and size of the fish in the River Imsa.

Acknowledgements. The authors are indebted to the staff of the NINA Research Station at Ims for daily monitoring of the fish traps during the study period. Professor Geir O. Storvik, Department of Mathematics, University of Oslo gave statistical advice, and helpful comments from two anonymous referees improved the presentation. Economic support was received from the Norwegian Institute for Nature Research, the Norwegian Environmental Agency, and the Norwegian Research Council’s research programme NORKLIMA (project no 225014). The Norwegian Animal Research Experimentation Agency (NARA) approved this research.

LITERATURE CITED

Beamich RJ, Mahnken C (2001) A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Progr Oceanogr 49:423-437

Carlin B (1955) Tagging of salmon smolts in the river Lagan. Rep Inst Freshw Res Drottningholm 36:57-74

Castellani M, Heino M, Gilbey J, Araki H, Svåsand T, Glover KA (2015) IBSEM: An individual-based Atlantic salmon population model. PLoS ONE 10(9): e0138444

Charnov EL, Gislason H, Pope JG (2013) Evolutionary assembly rules for fish life histories. Fish Fish 14:213-224

Chaput G (2012) Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J Mar Sci 69:1538-1548

Craig, JK, Burke BJ, Crowder LB, Rice JA (2006) Prey growth and size-dependent predation in juvenile estuarine fishes: experimental and model analyses. Ecology 87:2366-2377

Cunjak RA, Therrien, J (1998) Inter-stage survival of wild juvenile Atlantic salmon, Salmo

 salar L. J Fish Manage Ecol 5:209-223Devore JL, Berk KN (2012) Modern mathematical statistics with applications $2^{\text {nd }}$ ed, Springer, Dordrecht

Dieckmann U, Heino M (2007) Probabilistic maturation reaction norms: their history, strengths, and limitations. Mar Ecol Progr Ser 335:253-269

Dingle H, Drake VA (2007) What is migration? Bioscience 57: 113-121

Einum S, Thorstad EB, Næsje TF (2002) Growth rate correlations across life-stages in female Atlantic salmon. J Fish Biol 60:780-784

Elson PF (1957) The importance of size in the change from parr to smolt in Atlantic salmon. Can Fish Cult 21:1-6

Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farmed Atlantic salmon invading a native population. Proc Roy Soc Lond B 267:1517-1523

Friedland KD, MacLean JC, Hansen LP, Peyronnet AJ, Karlsson L, Reddin DG, Ó Maoiléidigh N, McCarthy JL (2009) The recruitment of Atlantic salmon in Europe. ICES J Mar Sci 66:289-304

Hansen LP (1988) Effects of Carlin tagging and fin clipping on survival of Atlantic salmon (Salmo salar L.) released as smolts. Aquaculture 70:391-394

Hansen LP, Jonsson N, Jonsson B (1993) Oceanic migration of homing Atlantic salmon. Anim Behav 45:927-941

Hedger RD, Sundt-Hansen LE, Forseth T, Diserud OH, Ugedal O, Finstad AG (2013) Modelling the complete life-cycle of Atlantic salmon (Salmo salar) using a spatially explicit individual-based approach. Ecol Model 248:119-129

Heino M, Dieckmann U, Godø OR (2002a) Measuring probabilistic reaction norms for age and size at maturation. Evolution 56:669-678

Heino M, Dieckmann U, Godø OR (2002b) Estimating reaction norms for age and size at maturation with reconstructed immature size distributions: a new technique illustrated by application to Northeast Arctic cod. ICES J Mar Sci 59:562-575

Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall DJ (eds) Fish Physiology XIB, Academic Press, London, p 275-343

Hunter A, Speirs DC, Heath MR (2015) Fishery-induced changes to age and length dependent maturation schedules of three demersal fish species in the Firth of Clyde. Fish Res 170:14-23

Isaksson A, Bergman PK (1978) An evaluation of two tagging methods and survival rates of different age and treatment groups of hatchery reared Atlantic salmon. J Agricult Res Iceland 10:74-99

Jonsson B (1976) Comparison of scales and otoliths for age determination in brown trout, Salmo trutta, L. Norw J Zool 24:295-301

Jonsson B, Hindar K (1982) Reproductive strategy of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can J Fish Aquat Sci 39:1404-1413

Jonsson B, Jonsson N (2011) Ecology of Atlantic salmon and brown trout: Habitat as a template for life histories. Fish Fish Series 33, Springer, Dordrecht

Jonsson B, Jonsson, N (2016) Fecundity and water flow influence the dynamics of Atlantic salmon. Ecol Freshw Fish, early view, doi:10.1111/eff. 12294

Jonsson B, Stenseth NC (1976) Regression of body length on scale size of brown trout, Salmo trutta, L. Norw. J. Zool. 24:331-340

Jonsson B, Hindar K, Northcote TG (1984) Optimal age at sexual maturity of sympatric and experimentally allopatric cutthroat trout and Dolly Varden charr. Oecologia 61:319-325

Jonsson B, Jonsson N, Albretsen J (2016) Environmental change influences the life history of salmon in the North Atlantic. J Fish Biol 88:618-637

Jonsson N, Jonsson B (2003) Energy density and content of Atlantic salmon: variation among developmental stages and types of spawners. Can J Fish Aquat Sci 60:506-516

Jonsson N, Jonsson B (2007) Sea growth, smolt age and age at sexual maturation in Atlantic salmon. J Fish Biol 71:245-252

Jonsson N, Jonsson B (2014) Time and size at seaward migration influence the sea survival of Atlantic salmon (Salmo salar L.). J Fish Biol 84:1457-1473

Jonsson N, Hansen LP Jonsson B (1991) Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J Anim Ecol 60:937-947

Jonsson N, Jonsson B, Fleming IA (1996) Does early growth rate cause a phenotypically plastic response in egg production of Atlantic salmon? Funct Ecol 10:89-96

Jonsson N, Jonsson B, Hansen LP (1998a) The relative role of density-dependent and densityindependent survival in the life cycle of Atlantic salmon Salmo salar. J Anim Ecol 67:751-762

Jonsson N, Jonsson B, Hansen LP (1998b) Long-term study of the ecology of wild Atlantic salmon smolts in a small Norwegian river. J Fish Biol 52:638-650

Magurran AE (1990) The adaptive significance of schooling as an anti-predator defence in fish. Ann Zool Fennici 27:51-66

Mangel M (1996) Computing expected reproductive success of female Atlantic salmon as a function of salmon size. J Fish Biol 49: 877-882

Mäntyniemi S, Romakkaniemi A, Dannewitz J, Palm S, Pakarinen T, Pulkkinen H, Gårdmark A, Karlsson O (2012) Both predation and feeding opportunities may explain changes in survival of Baltic salmon post-smolts. ICES J Mar Sci 69:1574-1579

Meekan MG, L. Vigliola L, Hansen A, Doherty PJ, Halford A, Carleton, JH (2006) Bigger is better: size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Mar Ecol Progr Ser 317:237-244

Miller TJ, Crowder LB, Rice JA, Marschall EA (1988) Larval size and recruitment echanisms in fishes: toward a conceptual framework. Can J Fish Aquat Sci 45:1657-1670

Morita K, Morita SH, Fukuwaka MA, Matsuda H (2005) Rule of age and size at maturity of chum salmon (Oncorhynchus keta): Implications of recent trends among Oncorhynchus spp. Can J Fish Aquat Sci 62:2752-2759

Morita K, Tsuboi J, Nagasawa T (2009) Plasticity in probabilistic reaction norms for maturation in a salmonid fish. Biol Lett 5:628-631

Økland F, Jonsson B, Jensen A, Hansen LP (1993) Is there a threshold size regulating smolt size in brown trout and Atlantic salmon? J Fish Biol 42:541-550

Olsen EM, Serbezov D, Vøllestad LA (2014) Probabilistic maturation reaction norms assessed from mark-recaptures of wild fish in their natural habitat. Ecol Evol 4:16011610

Piché J, Hutchings JA, Blanchard W (2008) Genetic variation in threshold reaction norms for alternative reproductive tactics in male Atlantic salmon, Salmo salar. Proc Roy Soc B 275:1517-1574

Piou C, Prévost E (2012) A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity. Ecol Model 231:37-52

Salminen M (1997) Relationships between smolt size, post smolt growth and sea age at maturity in Atlantic salmon reached in the Baltic Sea. J Appl Ichthyol 13:121-130

Saloniemi I, Jokikokko E, Kallio-Nyberg I, Jutila E, Pasanen P (2004) Survival of reared and wild Atlantic salmon smolts: size matters more in bad years. ICES J Mar Sci 61: 782787

Schindler DA (1999) Migration strategies of young fishes under temporal constraints: the effect of size-dependent overwinter mortality. Can J Fish Aquat Sci 56 (Suppl 1):6170

Sloat MR, Fylan JF, Dunham JB, Falke JA, Jordan CE, McMillan JR, Ohms HA (2014) Ecological and evolutionary patterns of freshwater maturation in Pacific and Atlantic salmonids. Rev Fish Biol Fish 24:689-707

Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci 60:1129-1157

Symons PEK (1979) Estimated escapement of Atlantic salmon (Salmo salar) for maximum smolt production in rivers of different productivity. J Fish Res Bd Can 36:132-140

Thorpe JE (1987) Smolting versus residency: Developmental conflict in salmonids. Am Fish Soc Symp 1:244-252

Vainikka A, Huusko R, Hyvärinen P, Korhonen PK, Laaksonen T, Koskela J, Vielma J, Hirvonen H, Salminen, M (2012) Food restriction prior to release reduces precocious
maturity and improves migration tendency of Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 69:1981-1993

Webster SJ, Dill LM (2006) The energetic equivalence of changing salinity and temperature to juvenile salmon. Funct Ecol 20:621-629

Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in sizestructured populations. Ann Rev Syst Ecol 15:393-425

Wolf PA (1951) A trap for the capture of fish and other organisms moving downstream. Trans Am Fish Soc 80:41-45

Table 1. Back-calculated lengths (\pm SD, cm) of Atlantic salmon Salmo salar at the end of first (L-1), second (L-2), third (L-3) and fourth (L-4) growth season.

Smolt age	Sample size	L-1	L-2	L-3	L-4
1	11	11.8 ± 2.5			
2	613	6.8 ± 1.6	16.3 ± 2.4		
3	42	5.5 ± 1.4	11.7 ± 2.5	18.8 ± 3.7	
4	5	4.7 ± 1.5	9.8 ± 2.0	15.4 ± 2.7	20.7 ± 3.2

Fig. 1. Probability of smolting of Atlantic salmon Salmo salar given their length at (a) Age-1, test of regression coefficient $=0, P<0.001$, (b) Age- 2 , test of the regression coefficient $=0, P$ <0.001, (c) Age-3 years, test of the regression coefficient $=0, P<0.02$. The curves were fitted by logistic regression, circles along the left axes give length of pre-migratory fish, and circles along the right axes give length of migrating smolts. The figures were tilted 90° as reference to size at 50% probability of migration. (d) Salmon probabilistic migration reaction norm, showing the reaction norm midpoint ($L_{P 50}$, solid line) and envelope ($L_{P 25}-L_{P 75}$, gray polygon), and $L_{P 1}$ and $L_{P 99}$ (dotted lines). The crosses denote proportion of fish that smolted at the respective ages (corresponding to the probability lines), and the circles estimated mean length of the salmon in the river at these ages.

Fig. 2 (a) Fecundity of returning adult female Atlantic salmon Salmo salar relative to their lengths at smolting estimated from their scales $\left(r^{2}=0.00\right)$. Broken lines give the 95% prediction interval for future fecundity values. (b) Survival (l_{L}) was estimated for fish smolting at back-calculated lengths (11.0-11.25, 11.25-11.5 cm, etc) fitted by least squares regression. Broken lines give 95\% prediction interval. (c) Estimated reproductive rate (R) of adult females given their length at smolting (solid line) with 95\% prediction interval (broken lines).

Figure 1.

Figure 2.

