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Summary 

1. There is a growing recognition of the importance of indirect effects from hunting on wildlife 

populations, e.g., social and behavioral changes due to harvest, which occur after the initial 

offtake. Nonetheless, little is known about how the removal of members of a population 

influences the spatial configuration of the survivors. 

2. We studied how surviving brown bears (Ursus arctos) used former home ranges that had 

belonged to casualties of the annual bear hunting season in southcentral Sweden (2007-2015). 

We used resource selection functions to explore the effects of the casualty's and survivor's sex, 

age, and their pairwise genetic relatedness, population density, and hunting intensity on 

survivors' spatial responses to vacated home ranges. 

3. We tested the competitive release hypothesis, whereby survivors that increase their use of a 

killed bear’s home range are presumed to have been released from intraspecific competition. 

We found strong support for this hypothesis, as survivors of the same sex as the casualty 

consistently increased their use of its vacant home range. Patterns were less pronounced or 

absent when the survivor and casualty were of opposite sex.  
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4. Genetic relatedness between the survivor and the casualty emerged as the most important 

factor explaining increased use of vacated male home ranges by males, with a stronger response 

from survivors of lower relatedness. Relatedness was also important for females, but it did not 

influence use following removal; female survivors used home ranges of higher related female 

casualties more, both before and after death. Spatial responses by survivors were further 

influenced by bear age, population density, and hunting intensity.  

5. We have showed that survivors exhibit a spatial response to vacated home ranges caused by 

hunting casualties, even in non-territorial species such as the brown bear. This spatial 

reorganization can have unintended consequences for population dynamics and interfere with 

management goals. Altogether, our results underscore the need to better understand the short- 

and long-term indirect effects of hunting on animal social structure and their resulting 

distribution in space. 

Keywords 

Spatial response, kinship, competition, spatial reorganization, harvest, social structure, mortality, 

Ursus arctos 

 

Introduction 

Hunting has important direct and indirect effects on wildlife populations (Milner, Nilsen 

& Andreassen 2007). By removing individuals, hunting creates vacancies in a population's social 

and spatial configuration (McComb et al. 2001). In response to this removal, surviving 

individuals may exhibit a spatial reorganization (Gese 1998; Leclerc et al. 2017), which in turn 

may affect social structure, reproduction, and ultimately population dynamics (Robinson et al. 
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2008; Cooley et al. 2009). It is therefore important to better understand the effects of hunting on 

the space use of surviving individuals for sustainable hunting practices. 

 One consequence of the removal of conspecifics (hereafter casualties) is the release of 

surviving individuals (hereafter survivors) from competition or social constraints (Maletzke et al. 

2014; Loveridge et al. 2016). Competitive release may manifest itself in the increased use of a 

casualty´s former home range (HR; hereafter vacancy) by survivors (Gese 1998; Goodrich et al. 

2010), i.e. a spatial response, which in turn could be influenced by several sociodemographic 

factors (Maletzke et al. 2014; Loveridge et al. 2016). 

Sex is an important factor for determining life history strategies, social systems, and 

consequently population structure (Lott 1991; Bonenfant et al. 2002). Same-sex individuals 

compete for breeding opportunities or for resources necessary for reproduction (Clutton-Brock & 

Huchard 2013a). Sex-differences in morphology and habitat selection likely decrease intersexual 

competition, enabling the sharing of space and mating opportunities (e.g. Zabala, Zuberogoitia & 

Martinez-Climent 2007). Therefore, the removal of same-sex individuals has the potential to 

induce stronger spatial responses by survivors than the removal of opposite-sex individuals, if 

intrasexual competition is a spatially limiting factor for a given sex (e.g. Nelson 1995).  

Kin selection theory states that the degree of genetic relatedness can influence 

competition among individuals (Hamilton 1964). Higher genetic relatedness between individuals 

has been linked to higher HR overlap and increased spatial aggregations (Ratnayeke, Tuskan & 

Pelton 2002; Wronski & Apio 2005). Within these socio-spatial relationships, relatedness has 

been shown to increase reproductive output, foraging efficiency, and tolerance (Pusenius et al. 

1998; Wronski & Apio 2005; Wright et al. 2016). The removal of kin from a population in social 

species can lower the competitive ability of the surviving kin to gain access to space and 
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associated resources, as well as breeding opportunities (McComb et al. 2001; Clutton-Brock & 

Huchard 2013b). In comparison, unrelated survivors may benefit from removals, which may 

result in stronger spatial responses toward vacancies belonging to nonkin. Kin-based 

aggregations in mammals are more common in females than males, due to female-biased 

philopatry (Waser & Jones 1983). Furthermore, there is increasing evidence that female space 

use among solitary carnivores is linked to mother-daughter home range overlap, a pattern not 

observed between mothers and sons (Fattebert et al. 2015; Fattebert et al. 2016). Therefore, the 

influence of relatedness on survivors’ spatial responses may differ between the sexes and be 

stronger for females in philopatric species. 

Additional factors commonly modulate the level of intra- and intersexual competition in 

space use. For example, age is often associated with dominance status (Clutton-Brock & 

Huchard 2013a), reproductive success (e.g. King, Festa-Bianchet & Hatfield 1991), and access to 

resources (McComb et al. 2001). The removal of older, dominant individuals from a population 

allows nearby survivors to exploit resources previously denied to them either directly through 

aggression or indirectly through increased use (Pilfold, Derocher & Richardson 2014) of the 

killed animal’s HR. Furthermore, older nearby survivors may be able to better take advantage of 

vacancies (i.e., HRs of a removed individual), as seen in Seychelles warblers (Acrocephalus 

sechellensis) (Eikenaar et al. 2008). Increasing population density can increase competition for 

food resources and breeding opportunities (e.g. McLoughlin et al. 2006). The removal of an 

individual decreases direct competition experienced by a nearby survivor, but the magnitude of 

this effect may depend on population density. At higher densities, the spatial response of a 

nearby survivor can be limited, due to prevailing spatial competition among a higher number of 

other survivors (Leclerc et al. 2017). At the same time, populations with higher hunting 
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intensities or individual turnover are typically less stable in terms of social structure, which can 

increase spatial responses (Porter et al. 1991; Comer et al. 2005).  

Examining the combined effects of sociodemographic factors on survivors’ spatial 

responses to the removal of conspecifics requires detailed individual-based data. Most studies on 

the effects and mechanisms of removal on spatial reorganization have been conducted on 

territorial birds, many of which were not hunted populations (e.g. Eikenaar et al. 2008). The 

paucity of knowledge on spatial responses in mammals and those which are hunted is likely due 

to the scarcity of individual-based data needed to investigate their social structure (Clutton-Brock 

& Sheldon 2010).  

Here we use detailed individual-based, social, spatial and genetic data on brown bears 

(Ursus arctos) to explore the effects of removing individuals in a hunted population on 

survivors’ spatial responses. The brown bear is a large solitarily-living carnivore (Steyaert et al. 

2012). However, related females form aggregations (Støen et al. 2005), and HRs of both sexes 

vary similarly according to food availability and population density (Dahle & Swenson 2003). 

Leclerc et al. (2017) found for male brown bears that survivors' increased use of casualties' HRs 

was modulated by bear age, population density, and hunting intensity. This study builds upon 

those findings to explore the responses in both sexes and evaluate whether kinship between 

casualties and survivors modulates the post-hunt spatial reorganization. By considering a 

casualty's former home range as an area containing resources, we used resource selection 

functions (RSFs) (Manly et al. 2002) to investigate which factors affect the spatial responses of 

survivors during the two years following the removal of a nearby individual. Based on the 

competitive release hypothesis, we predicted that: (P1a) survivors would increase their use of a 

casualty’s HR and (P1b) this increase would be stronger when survivors and casualties are of the 
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same sex. (P2) Genetic relatedness should be negatively correlated with survivors’ increase in 

use of casualties’ HRs if both are females, but not if they are males or bears of the opposite sex. 

(P3) Ages of both survivors and casualties would be positively related to a survivor’s increase in 

use of a casualty´s HR. (P4) Population density would be negatively related to a survivor’s 

increase in use of a casualty´s HR, whereas (P5) hunting intensity will be positively related to 

increases in use. 

 

Materials and Methods 

The study area is located in southcentral Sweden (61°N, 15°E) and is composed of bogs, 

lakes, and intensively managed and mixed-aged forest stands. Between 1985-2015, we captured 

499 brown bears from a helicopter using a remote drug delivery system (Dan-Inject®, Børkop, 

Denmark) (Fahlman et al. 2011). All captures and handling were approved by the Swedish Board 

of Agriculture, Uppsala Ethical Committee on Animal Experiments, and the Swedish 

Environmental Protection Agency. We determined the bears’ sex at capture and extracted a 

premolar tooth for age determination (Matson 1993) from individuals not captured as a yearling 

(n = 181). Starting in 2003, we equipped bears with GPS collars (GPS Plus; Vectronic Aerospace 

GmbH, Berlin, Germany) programmed to relocate a bear with varying schedules (≤1 hour). In 

addition, we acquired data on location, sex, and age (determined as above) for all known dead 

brown bears in Sweden between 1981-2014 (n = 3,960), of which 83% was caused by legal 

hunting. 

MODEL DEVELOPMENT 

We assumed that a vacancy created through the removal of a conspecific was a spatially 

explicit 'resource' or a collection of resources available to remaining survivors. We used resource 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

selection functions (RSFs; Manly et al. 2002) to determine whether survivors showed a spatial 

response over time to vacancies. RSFs contrast relocations of use and those randomly available, 

while explaining the pattern of use with a set of covariates, e.g., whether a location falls inside or 

outside a specific area or a casualty's former HR in this case. We coded the dependent variable as 

either a real GPS (= 1) or a simulated, randomly created (= 0) relocation; the latter represented 

the extent of use by neighboring bears of the casualty’s home range under the null hypothesis 

absent of competitive exclusion. We used generalized linear mixed models (GLMM) with a logit 

link to assess the influence of sex on spatial responses (Step I). Then, to simplify model 

complexity, we evaluated how spatial responses was modulated by age, pairwise relatedness, 

density index, and hunting intensity separately by casualty-survivor sex combination (Step II). 

LOCATION DATA 

We only included adult bears (≥ 4 year-olds; Støen et al. 2006) in the analysis to avoid 

potential confounding effects of dispersing bears on the spatial response to harvest. We removed 

GPS fixes with dilution of precision values >10 to increase spatial accuracy (D'Eon & Delparte 

2005). To reduce autocorrelation caused by a lack of independence among successive GPS 

positions, we used a 6-hour minimum interval between successive positions (yielding a 

maximum of 4 relocations per bear/day). We excluded bears that had <75% of days with 

relocations during May 1 – August 21 (after den exit until the start of hunting) in a given year 

from 2007-2015 to have adequate coverage of the bear's nondenning period. We defined 

casualties' HRs with the 95
th

 percentile isocline from a kernel density distribution, using the 

'reference' bandwidth (ad hoc method) and a fixed kernel in the R package 'adehabitatHR' 

(Calenge 2006). 
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COVARIATE DESCRIPTION 

We extracted an annual population density index for each casualty. This index was 

derived using spatially-referenced genetic data obtained from county-level scat collections in 

Sweden. Individual bears were identified from feces using six microsatellites (see Bellemain et 

al. 2005; Kindberg et al. 2011). Scat collections occurred in different years among counties and 

collection was not spatially homogenous. Therefore, we chose a grid size of 10x10 km cells and 

adopted the method of Jerina et al. (2013) to sum the weighted values of an individual bear's 

(multiple) scats across this spatial grid. An individual’s scat count was weighted (1/√n) 

according to the number of samples collected, so that the sum of the weighted values was equal 

among all individuals (Jerina et al. 2013). The weighted scat values were then summed by cell at 

the county level, after which the county-level distribution was annually corrected using county-

level trends of the Large Carnivore Observation Index (LCOI; provided by the Swedish 

Association for Hunting and Wildlife Management; Kindberg, Ericsson & Swenson 2009; 

Kindberg et al. 2011) during the study period. All county grids were then summed and joined to 

produce an annual density index for the study area for 2007-2015. The resulting grids were then 

smoothed using a 3x3 cell moving window (30x30 km) (see Appendix S1). Density index values 

were extracted at the casualties' HR centroids. 

We used 16 autosomal microsatellites (Table S1; Støen et al. 2005) to construct a 

pedigree and to calculate relatedness estimates between individuals (Lynch & Ritland 1999). 

This pedigree (Table S2) included genetics from captured and recovered dead bears (N = 1,614). 

To estimate relatedness, we chose Lynch and Ritland's (1999) estimator, because it has shown 

the highest correlation with theoretical relatedness values from a simulated pedigree of known 

relationships compared to other estimators (Csillery et al. 2006). We used the relatedness 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

estimates calculated using the microsatellites rather than from the pedigree, because it avoided 

information loss caused by missing parental assignments in the pedigree (Zeyl et al. 2009). 

Additionally, the mean values of the relatedness estimates closely matched the theoretical 

relatedness in our pedigree (Fig. S1). 

We calculated a proxy for hunting intensity based on the number of dead bears located 

within a 40-km buffer of a casualty's HR centroid 3 years prior to its death. We only used dead 

bears of the same sex as the casualty in this calculation, to keep the additive effect on changes in 

the spatial response by survivors consistent by sex (see Step I under Model Structure). 

For each casualty, we 1) determined its annual 95% kernel HR for the year in which it 

was killed and 2) calculated a 40-km radius circular buffer centered on its HR centroid (Fig. 1). 

We chose the 40-km buffer radius, because it is the distance within which most HR centroids of 

successful mates occur (Bellemain et al. 2006) and it is beyond the range of a dead male's 

influence on sexually-selected infanticide (SSI) and cub survival (Gosselin et al. 2017). We used 

the GPS relocations of all survivors and that of the casualty within the circular buffer during the 

year of the casualty's death to 3) calculate a 95% kernel isocline (hereafter sampling space), and 

4) we determined if relocations of each survivor were inside or outside the casualty’s HR for a 

given year (see period below). For each survivor, we 5) generated the same number of random as 

real GPS relocations within the sampling space and 6) assigned them the same attributes (i.e. sex 

and age, population density, pairwise relatedness, and hunting intensity) as the observed 

relocations. We 7) determined if the random relocations were inside or outside the casualty’s 

HR. We repeated steps 4-7 for a 3-year period (Y0 = before the casualty bear died, Y1 = first 

year after death, and Y2 = second year after death) while keeping the sampling space constant 

from that derived in Y0. The sampling space was kept constant, because we did not want to 
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create a sampling landscape that had never existed by varying according to the former home 

range of a shot bear with that of future positions from its neighbors. 

MODEL STRUCTURE 

Step I: effect of sex on survivors’ spatial responses 

We tested the sex effect on survivor responses (Step I: sex-effect model). We compared 

candidate models of increasing complexity (Table 1), with the complete model consisting of a 4-

way interaction including the casualty’s sex (2 levels), the survivor’s sex (2 levels), the period 

(factor with 3 levels: Y0, Y1, and Y2; see Fig. 1), as well as a dummy variable representing 

whether the relocations were inside (= 1) or outside (= 0) the casualty’s HR. To control for 

unequal sample sizes among individuals and possible temporal collinearity within pairs, we 

nested the survivor’s ID into the casualty’s ID as a random effect on the intercept. Additionally, 

we used the year of the survivor’s response as a random intercept to account for possible 

interannual environmental effects on survivors' responses. The sex-effect dataset (Step I) 

consisted of 26 casualties (14 females, 12 males), 26 survivors (with a mean of six female and 

two male survivors per casualty), yielding 216 casualty and survivor dyads over a three-year 

period, and 601,398 survivor relocations used for analyses. 

Step II: additional factors modulating survivors’ spatial responses 

Based on the results of Step I, we reduced model complexity and controlled for the sex 

effect in Step II by creating separate candidate models for all sex combinations of casualty-

survivor bears. We evaluated which factors (age, pairwise relatedness, density index, hunting 

intensity) were most important in modulating the patterns observed in Step I. These model data 

sets consisted of 38,266 relocations for male-male (11 casualties; 7 survivors), 263,838 

relocations for male-female (11 casualties; 15 survivors), and 257,420 relocations for female-
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female (14 casualties; 19 survivors). We built candidate models of increasing complexity, with 

the complete model consisting of additive factors each interacting with the dummy variables 

"Inside" and "Period" (see Table 2). We used the same random effects structure as in Step I. For 

all models tested in Steps I and II, the variance inflation factor (VIF) values for all variables were 

< 3 (Zuur, Ieno & Elphick 2010). 

MODEL SELECTION AND VALIDATION 

We used the Bayesian Information Criterion (BIC) to select the "best model" for each 

Step I and Step II model results, i.e., the model that best fit the data while concurrently 

penalizing the number of parameters estimated in the model fitting process. We assessed the 

relative importance of variables within the best models by dropping each variable of the model 

and monitoring the ∆BIC. The larger the relative increase in BIC compared to the best model, the 

more important we considered the variable. We assessed the robustness of our results by varying 

the kernel isocline (i.e. 75%, 90%, and 95%) of the sampling space and compared model 

predictions across isoclines (sensu Bischof et al. 2016). We used R 3.2.4 for all statistical 

analyses (R Development Core Team 2016). 

 

Results 

EFFECT OF SEX ON SURVIVORS’ SPATIAL RESPONSES TO VACANCIES 

The complete model, keeping all fixed terms and interactions, had the best fit (Table 1 

and S3). It suggested that survivors increased their use of a casualty's HR, especially if they were 

of the same sex. However, male survivors did not increase their use of a female casualty's HR 

(Fig. 2). A male survivor was 1.03 (95% CI: 0.89 – 1.20) and 1.42 (95% CI: 1.22 – 1.64) times 

more likely to use a male casualty's HR during the first (Y1) and second (Y2) year after the 
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casualty's death (Y0), respectively (Fig. 2). A female survivor was 1.30 (95% CI: 1.17 – 1.44) 

and 1.55 (95% CI: 1.40 – 1.72) times more likely to use a female casualty's HR during the first 

(Y1) and second (Y2) year after the casualty's death (Y0), respectively. We detected no clear 

temporal trends in casualties and survivors belonging to different sexes. For example, a female 

survivor was 1.14 (95% CI:  1.08 – 1.20) more likely to use a male casualty 's HR in the first 

year after his death (Y1), but this dropped to near baseline level (Y0), i.e., 1.07 (95% CI: 1.01 – 

1.13) during the second year (Y2). Most patterns were robust against varying isoclines (75%, 

90%, and 95%) on the sampling space, with the exception of male-male spatial responses at the 

75% isocline, which were no longer detectable at this scale (Fig. S2). As all other spatial 

responses were virtually the same across isoclines, we only present the 95% isocline results in 

Step II. 

ADDITIONAL FACTORS MODULATING SURVIVOR SPATIAL RESPONSES TO 

VACANCIES 

We excluded the female-male dyads for Step II analyses, because male survivors did not 

change their use of female casualties’ HRs. In decreasing order of importance, the best model for 

the male-male model retained relatedness (∆BIC = 363), the survivor’s age (∆BIC = 302), and 

hunting intensity (∆BIC = 18) (Table 2 and S4). The best female-female model kept relatedness 

(∆BIC = 2371), the casualty’s age (∆BIC = 290), and hunting intensity (∆BIC = 106) (Table 2 

and S5). The most important variable for the male-female combination was density (∆BIC = 

3544), followed by the survivor’s age (∆BIC = 2792), and hunting intensity (∆BIC = 1780) 

(Table 2 and S6).  

In both male-male and female-female dyads, higher relatedness (ranging from -0.31 to -

0.17 and from -0.41 to 0.44, respectively) explained the higher magnitude of a survivor’s use of a 
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casualty's HR (Fig. 3a and b). The positive change in a female survivor’s use of a female 

casualty's HR was similar across periods for both low (25
th

 percentile) and high relatedness (75
th

 

percentile) (Fig. 3b). In contrast, male survivors with lower relatedness to a male casualty 

showed a stronger increase in use of its HR from Y1 to Y2 than male survivors of higher 

relatedness (Fig. 3a). Furthermore, the increase in use of a male casualty's HR from Y1 to Y2 

was stronger when male survivors were older and in areas of high hunting intensity (Fig. 3c and 

4a). Similarly, the increase in use of a female casualty's HR by female survivors was stronger in 

areas of higher hunting intensity (Fig. 3d). There was no increase in use of a female casualty's 

HR if the female casualty was older, whereas the increase was strong when the casualty was 

younger (Fig. 4b). Older female survivors in low density with high hunting intensity increased 

their use of a male casualty's HR in Y1, but this was reduced or reversed in Y2 (Fig. 4c, 4d, and 

4e). The most common retained variable was hunting intensity, which was generally associated 

with increased use of a casualty’s HR (Fig. 3c, 3d and 4e). For all models, the random intercepts 

on casualty ID and on survivor ID nested in casualty ID had a variance below 0.02. Furthermore, 

the random intercept on year was virtually zero (< 0.001) for all models. 

 

Discussion 

The removal of bears by hunters had a pronounced effect on the spatial configuration of 

survivors. We found that spatial responses to hunter-created vacancies and the role of modulating 

factors was highly dependent on sex of survivors and casualties. In support of our predictions, 

the pattern of increased use of a casualty’s HR (P1a) by same-sex survivors (P1b) was best 

explained by intrasexual competition. Intrasexual HR exclusion often contrasts with intersexual 

HR overlap in territorial species (e.g. Persson, Wedholm & Segerström 2009), presumably due to 
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stronger competition within the sexes to maximize mating opportunities and access to other 

resources (Clutton-Brock & Huchard 2013b). Some territorial species reduce intersexual 

competition through a seasonally flexible social organization (e.g. Erlinge & Sandell 1986) or 

sexual differences in habitat selection and behaviors (e.g. Zabala, Zuberogoitia & Martinez-

Climent 2007), which are linked to sexual dimorphism (Beerman et al. 2015).  

It is noteworthy that we detected these pronounced spatial patterns in a nonterritorial 

species. Competition for resources in nonterritorial, solitary-living species, such as the brown 

bear, is harder to detect than in territorial species, because inter- and intrasexual HR overlap is 

common. Therefore fewer studies on competition exist in these species (Pilfold, Derocher & 

Richardson 2014), but observed segregation in habitat selection between the sexes within areas 

of HR overlap implies competition or at least conflicts of interests (e.g. SSI; Steyaert et al. 

2016). Furthermore, resource availability can vary annually within HRs, which could modulate 

an individual bear's decision whether to increase its use of a vacancy. However, the random 

intercept on year accounted for very little variance across all models, giving little evidence that 

interannual variation of resources had an effect on the spatial response of survivors to vacancies 

in our study. 

Although bears are generally considered nonterritorial, dominance hierarchies have been 

observed around clustered food sources, like salmon (Oncorhynchus spp.) spawning rivers and 

garbage dumps (e.g. SSI; Gende & Quinn 2004; Peirce & Van Daele 2006). Furthermore, 

territorial behavior and dominance may play a larger role in space use in both sexes in the study 

population than previously thought (Støen et al. 2005; Zedrosser et al. 2007; Ordiz et al. 2008). 

This is most pronounced in female kin aggregations, where females may exclude unrelated 

females through “social fences,” i.e., increasing density results in increasing aggression between 
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members of different female aggregations during dispersal (Hestbeck 1982; Støen et al. 2005; 

Odden et al. 2014). Our results did not provide evidence for social fences in modulating spatial 

responses, as bear density was not retained in the best model for the female-female dyad and 

relatedness did not explain changes in the magnitude of a female survivor’s use of a female 

casualty’s HR over time. It is likely that vacancies are filled by both nearby survivors as well as 

immigrant dispersers (e.g. Benson, Chamberlain & Leopold 2004). Our study included adults 

that had already dispersed and established HRs, so kin-based social fences could still influence 

dispersal between female aggregations. Contrary to our prediction (P2), low relatedness between 

females did not correspond to a stronger increase in use of a female casualty’s HR across time. 

Higher relatedness did explain the higher magnitude of use of female vacancies by survivors of 

the same sex, which corresponds with kin-based aggregations of females due to philopatry 

(Støen et al. 2005; Støen et al. 2006). However, it remains unknown if the presence of nearby 

female kin results in fitness benefits (Støen et al. 2005). 

Surprisingly, we found that relatedness best explained a male survivor’s increase in use of 

a male casualty’s HR, with lower relatedness explaining larger increases in use in the second 

year following death. This contrasts our prediction (P2), that kinship would only be important for 

females. We confirmed that male spatial structure did not exhibit kin-based aggregations, as seen 

in females (Fig. S3; Støen et al. 2005), implying that male kinship may be important at the local 

level, but not at a larger spatial scale. Even without kin-based aggregations among males, male-

male interactions among solitary carnivores are likely more complex than previously thought 

(e.g. Elbroch et al. 2016). For example, males of the solitary-living fossa (Cryptoprocta ferox) 

can remain solitary or form stable associations, with kinship among other factors proposed as 

explanations (Lührs & Kappeler 2013). In our study, it is possible that male-male kinship created 
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contexts in which males exhibited higher tolerance for one another at the local scale, as 

evidenced by stronger apparent competitive release of survivors to casualties of lower 

relatedness. However, we treat this interpretation with caution, because the range of estimated 

relatedness values among male dyads in our study was lower (from -0.31 to 0.17) relative to 

female (from -0.41 to 0.44) and male-female (from -0.31 to 0.3) dyads, indicating that patterns in 

male dyads may not be biologically significant. The smaller range for male dyads is likely a 

result of male-biased dispersal (Zedrosser et al. 2007). 

In contrast to our prediction (P3), female survivors increased their use of the HRs of 

younger female casualties, but not those of older female casualties. We suggest two alternative 

explanations: (1) that the location of younger and older female HRs occurred in areas of low and 

high HR overlap, respectively (sensu Maletzke et al. 2014), or (2) that surviving females 

consistently avoided older female HRs even after death. Neither explanation was supported, as a 

post-hoc analysis showed that HR overlap between individual females and their female 

neighbors was constant across individual females' ages (Fig. S4). Nevertheless, areas of higher 

female HR overlap may be more resilient to spatial responses following the removal of female 

conspecifics, as the costs of responding spatially may outweigh its benefits. One example is 

increased predation mortality due to site unfamiliarity (e.g. Forrester, Casady & Wittmer 2015). 

Spatial responses of male bears to harvest-induced vacancies is consistent with the risk of SSI 

(Leclerc et al. 2017), but it is unclear how female spatial responses, i.e., their exploration of 

previously denied resources, may enhance the risk of SSI. Although female bears modulate SSI 

risk through differential habitat selection, the relative risk of SSI has not been studied at the HR 

scale (Steyaert et al. 2016). A female exhibiting high HR overlap with a killed female may have 

both limited costs in a spatial response, due to preexisting familiarity with her surroundings, and 
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limited benefits, due to already optimally used resources. However, through gradual expansion, 

females can also increase their access to other resources, such as space for future philopatic 

offspring, as seen in striped mice, Rhabdomys pumilio (Schradin et al. 2010). 

As predicted (P3), older males exhibited a stronger increase in their use of a male 

vacancy than younger males, perhaps due to differences in experience. Male bears have larger 

HRs than females and potentially also larger cognitive maps (Perdue et al. 2011; Noyce & 

Garshelis 2014). Greater experience and spatial knowledge may improve abilities to find and 

relocate resources, as seen in African elephants (Loxodonta africana) (McComb et al. 2001). In 

American black bears (U. americanus), Noyce and Garshelis (2014) found that migratory 

movement patterns appeared to be based on social cues, with males as leaders in paving the way 

toward important first-come, first-served food resources. Although age was not important in their 

study, age and experience play a role in social learning for other species (Galef & Laland 2005). 

Furthermore, dominant individuals might be more successful at taking over novel HR vacancies 

than subordinates, e.g. in side-blotched lizards (Uta stansburiana) (Fox, Rose & Myers 1981). 

The same first-come, first-served process may work with HRs as they become available, e.g. due 

to the death of conspecifics, with an older/dominant survivor taking advantage of newly 

available resources. 

Our prediction (P4) that density would be negatively related to increases in use of 

vacancies by survivors was confirmed for female survivors and male casualties, but was absent 

for all other casualty-survivor sex combinations. Low density areas have lower concentrations of 

females and were near the periphery of our population (Swenson, Sandegren & Soderberg 1998). 

The strong increase in use of male vacancies by females in low-density areas might suggest that 

females can take advantage of resources previously dominated by males at the population 
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periphery. Conversely, females at high densities did not increase their use of male vacancies, so 

density may represent a larger response of nearby survivors competing for this recently vacated 

HR. The absent effect of density in explaining spatial responses by same-sex survivors suggests 

that other context-dependent social factors (sex, relatedness, age), such as hunting intensity, are 

more important for a survivor’s decision to respond spatially rather than the number of 

conspecifics surrounding it. 

Higher hunting intensity provides more vacancies toward which nearby survivors can 

respond spatially (Leclerc et al. 2017). Although the spatial distribution of these vacancies 

available to survivors may vary, hunting intensity had (P5) a consistently positive relationship 

with the increased use of a vacancy by survivors for all casualty-survivor sex combinations 

depicting spatial responses. Furthermore, hunting intensity was the only factor retained in the 

best model for all sex combinations. Therefore, we found evidence for a consistent, additive 

effect of hunting intensity on a surviving animal’s spatial response towards a vacancy, which 

suggests a long-term effect of hunting on the dynamics of HRs. 

Management decisions, such as the degree of hunting intensity, appears to drive spatial 

responses of survivors and, therefore, likely alters competition for resources among survivors. 

Furthermore, we suggest that solitary species may be more social, with a basis in kinship, and 

that male-male relationships may be more complex than previously considered. The spatial 

reorganization caused by hunting and potentially compounding effects of continued hunting on 

social structure could be an important consideration when developing plans for sustainable 

harvest of wildlife populations, or for achieving other management goals, such as decreasing 

human-wildlife conflicts. Altogether, our results underscore the need to better understand the 

short- and long-term indirect effects of hunting on animal social structure and their resulting 
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distribution in space, which, if not understood, could have unforeseen consequences on 

population parameters such as fitness and population growth (Frank et al. in press). 
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Table captions 

Table 1. Results of the candidate models tested to determine the spatial responses of surviving 

brown bears to the death of nearby hunter-killed bears (casualties).  The number of parameters 

(K), log-likelihoods (LL), the change in BIC (∆BIC) from the best model, and the model weights 

(ω) are shown. 

 

Table 2. Results of the candidate models tested to determine the effect of age, pairwise 

relatedness, density index, and hunting intensity in modulating the spatial responses of surviving 

brown bears (survivors; S) to the death of nearby hunter-killed bears (casualties; C). The number 

of parameters (K), log-likelihoods (LL), the change in BIC (∆BIC) from the best model, and the 

model weights (ω) are shown for each casualty-survivor combination.  
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Table 1. 

Model Variable* K LL ∆BIC ω 

1 None 4 -416857 3512 0 

2 Inside × Period 9 -416120 2104 0 

3 Casualty Sex × Inside × Period 15 -415877 1698 0 

4 Survivor Sex × Inside × Period 15 -415304 552 0 

5 Model 3 + Model 4 21 -415069 162 0 

6 Casualty Sex × Survivor Sex × Inside × Period 27 -414948 0 1 

*Period (3-level factor: Y0, Y1, Y2 in reference to casualty death), Inside (2-level factor: inside 

or outside of casualty's home range), Casualty Sex (2-level factor: male or female), Survivor Sex 

(2-level factor: male or female). 
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Table 2. 

      Male–Male Female–Female Male–Female 

Model Variable K LL ∆BIC ω LL ∆BIC ω LL ∆BIC ω 

1 None 4 -

26524 

1516 0 -

178430 

5538 0 -

182879 

6275 0 

2 Inside × Period 9 -

26051 

622 0 -

177124 

2988 0 -

182850 

6281 0 

3 Cage × Inside × Period 15 -

26044 

671 0 -

176795 

2404 0 -

182221 

5096 0 

4 Cage × Inside × Period 15 -

25885 

353 0 -

177097 

3009 0 -

181741 

4137 0 

5 Hunting × Inside × Period 15 -

25978 

540 0 -

176991 

2798 0 -

182596 

5847 0 

6 Density × Inside × Period 15 -

25940 

463 0 -

176999 

2814 0 -

181859 

4372 0 

7 Relatedness× Inside × Period 15 -

25936 

456 0 -

175723 

262 0 -

182463 

5581 0 

8* Cage + Sage 21 -

25865 

377 0 -

176749 

2388 0 -

181122 

2974 0 

9* Cage + Hunting 21 -

25961 

570 0 -

176741 

2371 0 -

182102 

4935 0 

10* Cage + Density 21 -

25921 

490 0 -

176750 

2390 0 -

181527 

3783 0 

11* Cage + Relatedness 21 -

25928 

503 0 -

175608 

106 0 -

181957 

4644 0 

12* Sage + Hunting 21 -

25858 

363 0 -

176955 

2800 0 -

181407 

3544 0 

13* Sage + Density 21 -

25847 

341 0 -

176968 

2826 0 -

180525 

1780 0 

14* Sage + Relatedness 21 -

25685 

18 0 -

175712 

315 0 -

181497 

3723 0 

15* Hunting + Density 21 -

25898 

443 0 -

176915 

2720 0 -

181031 

2792 0 

16* Hunting + Relatedness 21 -

25828 

302 0 -

175700 

290 0 -

182226 

5182 0 

17* Density + Relatedness 21 -

25836 

319 0 -

175690 

270 0 -

181614 

3957 0 

18* Cage + Sage + Hunting 27 -

25837 

384 0 -

176691 

2347 0 -

180972 

2749 0 

19* Cage + Sage + Density 27 -

25838 

386 0 -

176702 

2368 0 -

180274 

1353 0 

20* Cage + Sage + Relatedness 27 -

25658 

27 0 -

175597 

159 0 -

181002 

2809 0 

21* Cage + Hunting + Density 27 -

25857 

425 0 -

176705 

2375 0 -

180966 

2737 0 

22* Cage + Hunting + Relatedness 27 -

25803 

316 0 -

175518 

0 1 -

181850 

4505 0 

23* Cage + Density + Relatedness 27 -

25821 

353 0 -

175597 

160 0 -

181358 

3521 0 

24* Sage + Hunting + Density 27 -

25803 

316 0 -

176876 

2716 0 -

179598 

0 1 

25* Sage + Hunting + Relatedness 27 -

25645 

0 0.98 -

175688 

341 0 -

181210 

3224 0 

26* Sage + Density + Relatedness 27 -

25675 

61 0 -

175680 

324 0 -

180447 

1698 0 
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*Model 8 to 33: Every variable is in a 3-way interaction with Inside × Period as shown in model 3. 

Bolded values are from the best models 

 

Figure captions 

 

Figure 1. Schematic representation of data handling. For each brown bear casualty (panel a), we 

determined its 95% kernel HR and calculated a 40-km radius circular buffer centered on the HR 

centroid. We used (panel b) all GPS locations of the casualty (filled black points) and those 

belonging to surviving bears (open gray points) within the circular buffer to calculate a 95% 

kernel density isocline (shaded with dashed gray border), representing the sampling space, and 

(panel c) determined if the survivor relocations were inside (open black points) or outside (open 

gray points) the casualty’s HR. We generated the same number of random (panel d) as real GPS 

locations and determined if the random locations were inside (open black points) or outside 

(open gray points) the casualty’s HR. We repeated the same process (panel c and d) for the next 

two years using the same sampling space. We repeated the same process (panel a-d) for all 

casualties.    

 

 

27* Hunting + Density + 

Relatedness 

27 -

25782 

274 0 -

175649 

263 0 -

180901 

2607 0 

28* Cage + Sage + Hunting + Density 33 -

25768 

310 0 -

176654 

2348 0 -

179576 

32 0 

29* Cage + Sage + Hunting + 

Relatedness 

33 -

25617 

8 0.02 -

175507 

54 0 -

180862 

2604 0 

30* Cage + Sage + Density + 

Relatedness 

33 -

25654 

82 0 -

175586 

212 0 -

180231 

1341 0 

31* Cage + Hunting + Density + 

Relatedness 

33 -

25760 

294 0 -

175496 

31 0 -

180854 

2588 0 

32* Sage + Hunting + Density + 

Relatedness 

33 -

25629 

31 0 -

175638 

316 0 -

179580 

39 0 

33* Cage + Sage + Hunting + Density 

+ Relatedness 

39 -

25597 

31 0 -

175485 

85 0 -

179561 

76 0 
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Figure 2. Log-odds ratios of brown bear survivors’ use of a casualty’s HR during the year in 

which the casualty died (Y0), the first (Y1) and second (Y2) year after the casualty’s death for 

different casualty-survivor sex combinations. The dashed line is the baseline year (Y0) indicating 

the survivor’s use of the casualty's HR before the casualty’s death. 

 

Figure 3. Log-odds ratios of nearby surviving brown bears’ (survivors’) use of hunter-killed 

bears’ (casualties’) HRs during the year in which the casualty died (Y0), the first year after the 

casualty’s death (Y1), and the second year after its death (Y2) in response to casualty-survivor 

relatedness (panel a, b) and previous hunting intensity (panel c, d). Low and high values of 

relatedness and hunting intensities represent the 25
th

 and 75
th

 percentiles found in the male-male 

(panel a, c) and female-female (panel b, d) datasets. Note: the values on the y-axis are different 

among plots. 

 

Figure 4. Log-odds ratios of surviving brown bears’ (survivors’) use of nearby hunter-killed 

bears’ (casualties’) home ranges during the year in which the casualty died in the fall (Y0), the 

first year after the casualty’s death (Y1), and the second year after its death (Y2), in response to 

casualty and survivor age, density index, and hunting intensity. Low and high values represent 

the 25th and 75th percentiles of the variable for the respective casualty-survivor data set. Note: in 

panel b, young casualty and old casualty almost completely overlap one another at Y0; the scales 

and intervals are different among the plots. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Supporting Information 

Additional Supporting Information may be found in the online version of this article: 

 

Appendix S1. Annual bear density Index. 

Table S1. Summary statistics for microsatellites used for pedigree reconstruction. 

Table S2. Summary of parentage assignment from pedigree construction. 

Table S3. Parameter estimates of the best 'sex' model (Step I). 

Table S4. Parameter estimates of the best 'additional factors' model (Step II) for male-male 

casualty-survivor combination. 

Table S5. Parameter estimates of the best 'additional factors' model (Step II) for female-female 

casualty-survivor combination. 

Table S6. Parameter estimates of the best 'additional factors' model (Step II) for male-female 

casualty-survivor combination. 

Figure S1. The distribution of relatedness estimates from Lynch-Ritland’s (1999) estimator. 

Figure S2. Comparison of three isoclines (a: 95%; b: 90%; c: 75%) for the sampling spaces and 

respective model results are shown for the sex-effect model, yielding similar results across isoclines. 

Figure S3. Pairwise relatedness plotted against distances between home range centroids of 

brown bears. 

Figure S4. Proportion home range overlap between individual females and their female 

neighbors against individual female age. 


